Beam Calculation

Relating to:

XXX

XXX

structural engineers & building surveyors

BIRMINGHAM • LEAMINGTON SPA • OXFORD • MILTON KEYNES • NOTTINGHAM • SHEFFIELD • BRISTOL • READING

www.allcottassociates.co.uk

Email: info@allcottassociates.co.uk

Allcott Associates LLP is a limited liability partnership registered in England and Wales with registered number OC354330 Our registered office address is Ladbroke Farm, Banbury Road, Ladbroke, Warwickshire, CV47 zBY The Institution of StructuraEngineers

Project Preface

Client name:	ХХХ	
Client address:	ХХХ	
	XXX	
	XXX	

Prepared at:	Allcott Associates LLP
	2 Victoria Works
	Vittoria Street
	Birmingham
	B1 3PE
Document prepared by:	James Bodicoat MEng CEng MICE MIstructE
	For and on behalf of Allcott Associates LLP

Date of Inspection:	xx/xx/xxxx
Job reference:	XXXXXX

1 Notes

- 1. The Building Contractors will need to, and must check all dimensions of openings on site prior to ordering steel, as we will not be held responsible for any incorrect lengths that are ordered.
- Beams are designed to be the most economical size for the loading imposed in most cases, not for the thickness of wall above. It is therefore the contractor's responsibility to ensure that the load is correctly supported above the beam with a plate or other method.
- 3. The design is for the support Beam only and we are not responsible for ensuring the adequacy of any foundations beneath the supporting wall. This will generally the responsibility of the Building Contractor to open up areas for the Building Inspector to verify. If we have to confirm foundation adequacy which is over and above the design an extra charge will be levied.
- 4. Should the length of the beams be revised by the client or the Building Contractor after we have completed our design which results in a redesign we reserve the right to charge again for all redesign works.
- 5. All dimensions used for design are clear openings only. Add a minimum 150mm bearing length to each end of beam unless otherwise stated for actual beam length when ordering beams
- 6. The designs are based on domestic loads only unless otherwise stated.
- Changes to all drawings are at client's instructions. All drawings should be checked for accuracy and should not be scaled from. Any discrepancy should be immediately informed to Allcott Associates.
- 8. The design is for the steel beams only, not the foundation or additional width support on the beam for the wall or other above the beam.
- 9. This design does not mean that any other part of the building or than the beam itself complies with current building regulations and this should be checked with the local authority.
- 10. Unless otherwise stated pad stones should be proprietary precast C35 concrete 450mm long by 225 deep and 100mm wide.
- 11. Designs are based on client's instructions. If these are given incorrectly by the client and the design beam is not correct for the opening, this will not the responsibility of this company. We reserve the right to charge again for any re-inspection and subsequent re-design.
- 12. The design will be based on the information including any drawings provided. Any opening up of areas will be the responsibility of the client. Any areas that are not opened up and are subsequently found not be as informed to us by the Client and requires either a re-visit or re-calculation will be charged again.
- 13. The scope and any limitations to miscellaneous services will be agreed with you before commencing.
- 14. Should the configuration of the building change after the design of the beams which subsequently affect Part A of the Building regulations, which requires re-calculation and a revisit then this will be charged again.
- 15. It is the responsibility of the Building Contractors to ensure that all walls for the support of the beams are adequate for the correct support of the beams.
- 16. These calculations are for the sole use of the person instructing the design and cannot be passed to a third party without the consent of Allcott Associates as the content will not be guaranteed to be correct as to when the report was transferred.
- 17. These calculations are only valid for 6 months from the date of the survey as codes of practice change. If the practical works are commenced within that period you should check that the calculations are still valid.
- 18. All beams to be finished with red oxide paint and correctly fire protected.

.....

2 Calculations Sheet

Referance:	LLCOTT SOCIATES
To provide support for Rod above Bifold doors in New Extension.	
Reposed By pat Ben Proposed Steel Column . <u>NOTE</u>	<u>d The Notes Section</u> <u>urements</u>
silling sil	rion
Hernsteinen eine das der Hernsteinen eine das	End wall for hyport. for the end of the second wall for the end of the end of the second wall for the end of the end of the second wall for the end of the end of the second wall for the end of the end of the end of the second wall for the end of the end of the end of the end of the second wall for the end of t
	ension
Factor of Safety Steel and Concrete 1.4 (Dead Load) + 1.6 (Imposed Load) + 1.0 (To BS5628)	
Factor of Safety Timber 1.0 (Dead Load) + 1.0 (Imposed Load) + 1.0 (To BS5628)	(Other)
Allowable Deflection $\delta = \text{Span} / 360$	
Consider all Beams <u>Un-Restrained</u>	

All Loadings to EN 1991 1 -4

Please note

Beams are designed for Clear openings. Add the bearing length either side for the actual beam length

www.allcottassociates.co.uk

Allcott Associates LLP is a limited liability partnership registered in England and Wales with registered number OC354330 Our registered office is Ladbroke Farm, Banbury Road, Ladbroke, Warwickshire, CV47 2BY

Referance 23000 Flugent 2019 Date:-AS S Prepared By:- Eur.Ing. David J Allcott BSc(hons), CEng, CBuildE, MICE, MCABE, MIWEM, AssocRICS O Jean Derign NOTE Koad fran Roef: -/m nur of beaur. Please Read The Notes Section Ref:- Measurements 5.0 × 1.17. = 2.93 Ku/m.n. Koads we' dead-Roof tiles - 1.17 Key/2 mpced Inow - 0.75 Key/2 imposed 5.0 × 0.75 = 1.88 Kmm Canider Masanne Lyport Beam. ely External internal Universal Rean Fellet Welds 8m flat plate 2 Beans, cach H: 3m Clear Opening Canolis uter Analyins Appendix From Camp 100m use internal External 25Hm × 146m× 32kg/ Unversal Beau Gmu feel length **Please note** flat Mark 285m -Beams are designed for Clear openings. Add the bearing length either side for the actual beam length

www.allcottassociates.co.uk

Allcott Associates LLP is a limited liability partnership registered in England and Wales with registered number OC354330 Our registered office is Ladbroke Farm, Banbury Road, Ladbroke, Warwickshire, CV47 2BY

STRUCTURAL ENGINEERS & SURVEYORS

August 2019 Date:-ASSO Prepared By:- Eur.Ing. David J Allcott BSc(hons), CEng, CBuildE, MICE, MCABE, MIWEM, AssocRICS Cohum Deugi NOTE Please Read The Notes Section Fran Previous Calculation **Ref:- Measurements** BTT = 21.7 KDm Shear = 20.2 KD. Axial Force = 13.5KD. . As 2 Beans Lyport a Colum Use Bit = H3. HKDm. Phene = HO.HKD. Arial force = 27 KD. Fran Computer analyjus Appendix B2 ure 120m × 120m × 10mm. (SHS) (Square Hellow Section)

Please note

Beams are designed for Clear openings. Add the bearing length either side for the actual beam length

www.allcottassociates.co.uk

Allcott Associates LLP is a limited liability partnership registered in England and Wales with registered number OC354330 Our registered office is Ladbroke Farm, Banbury Road, Ladbroke, Warwickshire, CV47 2BY

STRUCTURAL ENGINEERS & SURVEYORS

Referance - 23000 Hugurt 2019. Date:-ASSO Prepared By:- Eur.Ing. David J Allcott BSc(hons), CEng, CBuildE, MICE, MCABE, MIWEM, AssocRICS Ratter Dosign. NOTE Loads used Please Read The Notes Section **Ref:- Measurements** dead = 1.17 KN/m2. ryporec . 0.75 Ku/m2. Rafler Spacing 400 mm. Roof Slopse - 11.5 degrees Length of hafler on flope 5.0m. - Fran Cauparter Curatyin Appendix 33 Kafler will need to be. 250 m × 47 m C16. 2 400 €

Please note

Beams are designed for Clear openings. Add the bearing length either side for the actual beam length

www.allcottassociates.co.uk

Allcott Associates LLP is a limited liability partnership registered in England and Wales with registered number OC354330 Our registered office is Ladbroke Farm, Banbury Road, Ladbroke, Warwickshire, CV47 2BY

STRUCTURAL ENGINEERS & SURVEYORS

3 Rights of Originator

We reserve the right to refuse copies of the report to any third party (other than those named above). We also reserve the right to amend our opinions in the event of additional information being made available at some future date. The Contracts (Rights of Third Parties) Act 1999 shall not apply to this agreement.

END OF REPORT

James Bodicoat MEng CEng MICE MIstructE For and on behalf of Allcott Associates LLP

Appendix A

Dead Loads		
225mm Solid Wall	9"Brickwork	4.73 KN/m ²
	Plaster	0.20 KN/m ²
		<u>4.93 KN/m²</u>
250mm Cavity Wall	102 Brick	2.10 KN/m ²
	100 Block	1.35 KN/m ²
	Plaster	0.20 KN/m ²
		<u>3.65 KN/m²</u>
100mm Solid Wall	4"Brick	2.10 KN/m ²
	Plaster	0.20 KN/m ²
		<u>2.30 KN/m²</u>
Tiled Roof	Tiling/Battens/Felt	0.67 KN/m ²
	Timber	0.30 KN/m ²
	Ceiling/Insulation	0.20 KN/m ²
		<u>1.17 KN/m²</u>
1 st Floor	Floor joists, boarding	0.305 KN/m ²
	Finishes	0.050 KN/m²
	Ceiling	0.20 KN/m ²
	Miscellaneous	0.15 KN/m ²
		<u>0.705 KN/m²</u>
Flat roof	Timbers / Felt Etc	0.42 KN/m ²
Ceiling	Plasterboard / Plaster	0.21 KN/m ²
Slate Roof	Slates/ Bath/ felt	0.28 KN/m ²
	Timber	0.30 KN/m ²
	Ceiling / Insulation	0.20 KN/m ²
		<u>0.78 KN/m²</u>
Imposed Loads		
	1 st Floor	1.50 KN/m ²
	Flat Roof (no access)	0.75 KN/m ²
	Pitched Roof	0.75 KN/m ²

Appendix B

.....

Allcott Associates LLP	Holmfiel	d, Bill lane, Woo	odale, Holmfir	th, HD9 1XX	2	3000
Unit 3, The Fosse Fosse Way, Radford Semele	Calcs for	Masonrv S	upport Beam		Start page no./	Revision 1
Warwickshire, CV31 1XN	Calcs by Calcs date Checked by Checked date DJA 08/08/2019			Checked date	Approved by	Approved date
STEEL MASONRY SUPPOR	RT .				Append	dix BI
In accordance with BS5950		ating Corrigenc	lum No.1			
	100	_50 _	1 100		Tedds calcul	ation version 1.0.0
	100	_ 50 50				
			*			
	⊲ −50− ▶⊲ −−100)		Ť		
	● 50 ● ● 100)		^		
Steel member details	⊲ —50— ▶⊲ ——100	1	10-07	Ť		
Torsion beam	4 −50 - 4 −−−100	UB 254x14	46x37	Ť		
Torsion beam Masonry support plate	4 —50 —▶4 ——100	UB 254x14 User	16x37	T		
Torsion beam Masonry support plate Steel grade of support plate	Le une el e i rea	UB 254x14 User S275		Ť		
Torsion beam Masonry support plate	Le une el e i rea	UB 254x14 User	N/mm²	↑		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support p	Le une el e i rea	UB 254x14 User S275 p _{ysb} = 275 E = 20500	N/mm²	↑ 1.000		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support p Modulus of elasticity	late	UB 254x14 User S275 p _{ysb} = 275 E = 20500	N/mm² 0 N/mm² I/mm² / p _{ysb}) =	↑ 1.000		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support p Modulus of elasticity Constant	late	UB 254x14 User S275 p _{ysb} = 275 E = 20500 ε = √(275N	N/mm² 0 N/mm² I/mm² / p _{ysb}) = m	↑ 1.000		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support plate Modulus of elasticity Constant Length of plate beyond beam Total length of plate Thickness of plate	late	UB 254x14 User S275 $p_{ysb} = 275$ E = 205000 ε = √(275N I _h = 150 mi I _{plate} = 285 t _{sb} = 8 mm	N/mm ² 0 N/mm ² I/mm ² / p _{ysb}) = m	↑ 1.000		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support plate Modulus of elasticity Constant Length of plate beyond beam Total length of plate	late	UB 254x14 User S275 $p_{ysb} = 275$ E = 205000 $\varepsilon = \sqrt{275N}$ $l_{h} = 150$ mm $l_{plate} = 285$	N/mm ² 0 N/mm ² I/mm ² / p _{ysb}) = m	↑ 1.000		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support plate Modulus of elasticity Constant Length of plate beyond beam Total length of plate Thickness of plate Width of main beam Area of plate	late	UB 254x14 User S275 $p_{ysb} = 275$ E = 205000 ε = √(275N $l_h = 150$ mm $l_{plate} = 285$ $t_{sb} = 8$ mm $B_{mb} = 146$ A _{sbu} = t _{sb} ×	N/mm ² 0 N/mm ² I/mm ² / p _{ysb}) = m mm I _{plate} = 2280.0	mm ²		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support pl Modulus of elasticity Constant Length of plate beyond beam Total length of plate Thickness of plate Width of main beam	late	UB 254x14 User S275 $p_{ysb} = 275$ E = 205000 ε = √(275N $l_h = 150$ mm $l_{plate} = 285$ $t_{sb} = 8$ mm $B_{mb} = 146$ A _{sbu} = t _{sb} ×	N/mm ² 0 N/mm ² I/mm ² / p _{ysb}) = m mm	mm ²		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support plate Modulus of elasticity Constant Length of plate beyond beam Total length of plate Thickness of plate Width of main beam Area of plate	late n to CoG	UB 254x14 User S275 $p_{ysb} = 275$ E = 205000 ε = √(275N $l_h = 150$ mm $l_{plate} = 285$ $t_{sb} = 8$ mm $B_{mb} = 146$ A _{sbu} = t _{sb} ×	N/mm ² 0 N/mm ² I/mm ² / p _{ysb}) = m mm I _{plate} = 2280.0	mm ²		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support pl Modulus of elasticity Constant Length of plate beyond beam Total length of plate Thickness of plate Width of main beam Area of plate Distance from weld position f	late	UB 254x14 User S275 $p_{ysb} = 275$ E = 205000 ε = √(275N $l_h = 150$ mm $l_{plate} = 285$ $t_{sb} = 8$ mm $B_{mb} = 146$ A _{sbu} = t _{sb} ×	N/mm ² 0 N/mm ² 1/mm ² / p_{ysb}) = m mm Iplate = 2280.0 2 - (Iplate - Ih) / 2	mm ²		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support plate Modulus of elasticity Constant Length of plate beyond beam Total length of plate Thickness of plate Width of main beam Area of plate Distance from weld position to Supported materials detail	late n to CoG beam	UB 254x14 User S275 pysb = 275 E = 20500 ε = √(275N) lh = 150 min lplate = 285 tsb = 8 mm Bmb = 146 Asbu = tsb × Cyysb = lh / 2	N/mm ² 0 N/mm ² I/mm ² / p _{ysb}) = m mm I _{plate} = 2280.0 2 - (I _{plate} - I _h) / 2 0 kN/m ³	mm ²		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support pl Modulus of elasticity Constant Length of plate beyond beam Total length of plate Thickness of plate Width of main beam Area of plate Distance from weld position of Supported materials detail Density of masonry on main	late n to CoG beam eam	UB 254x14 User S275 $p_{ysb} = 275$ E = 205000 $\varepsilon = \sqrt{275N}$ $l_{h} = 150 mm$ $l_{plate} = 285$ $t_{sb} = 8 mm$ $B_{mb} = 146$ $A_{sbu} = t_{sb} \times c_{yysb} = l_{h} / 2$ $\rho_{m,mb} = 20.$	N/mm ² 0 N/mm ² 1/mm ² / p_{ysb}) = m mm I _{plate} = 2280.0 2 - (I _{plate} - I _h) / 2 0 kN/m ³	mm ²		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support plate Design strength of support plate Modulus of elasticity Constant Length of plate beyond beam Total length of plate Thickness of plate Width of main beam Area of plate Distance from weld position the Supported materials detail Density of masonry on main	late n to CoG beam eam peam	UB 254x14 User S275 $p_{ysb} = 275$ E = 205000 $\varepsilon = \sqrt{275N}$ $l_h = 150 mm$ $l_{plate} = 285$ $t_{sb} = 8 mm$ $B_{mb} = 146$ $A_{sbu} = t_{sb} \times$ $c_{yysb} = l_h / 2$ $\rho_{m,mb} = 20$. $b_{mmb} = 100$	N/mm ² 0 N/mm^2 $1/mm^2 / p_{ysb}) =$ mm mm $I_{plate} = 2280.0$ $2 - (I_{plate} - I_h) / 2$ 0 kN/m^3 9 mm	mm ²		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support plate Design strength of support plate Modulus of elasticity Constant Length of plate beyond beam Total length of plate Thickness of plate Width of main beam Area of plate Distance from weld position to Supported materials detail Density of masonry on main be Height of masonry on main be	late n to CoG beam eam peam aterial	UB 254x14 User S275 $pysb = 275$ E = 20500 $\varepsilon = \sqrt{(275N)}$ $l_{plate} = 285$ $t_{sb} = 8 \text{ mm}$ $B_{mb} = 146$ $A_{sbu} = t_{sb} \times$ $c_{yysb} = l_h / 2$ $\rho_{m,mb} = 20$ $b_{mmb} = 134$ $e_{mb} = 50 \text{ m}$	N/mm ² 0 N/mm^2 $1/mm^2 / p_{ysb}) = m$ mm $I_{plate} = 2280.0$ $2 - (I_{plate} - I_h) / 2$ 0 kN/m^3 0 mm 3 mm 3 mm	mm ²		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support plate Design strength of support plate Modulus of elasticity Constant Length of plate beyond beam Total length of plate Thickness of plate Width of main beam Area of plate Distance from weld position of Supported materials detail Density of masonry on main be Height of masonry on main be	late n to CoG beam eam beam aterial not from masonry)	UB 254x14 User S275 $pysb = 275$ E = 20500 $\varepsilon = \sqrt{(275N)}$ $l_{plate} = 285$ $t_{sb} = 8 \text{ mm}$ $B_{mb} = 146$ $A_{sbu} = t_{sb} \times$ $c_{yysb} = l_h / 2$ $\rho_{m,mb} = 20$ $b_{mmb} = 134$ $e_{mb} = 50 \text{ m}$	N/mm ² 0 N/mm^2 $1/\text{mm}^2 / p_{ysb}) =$ mm $1_{plate} = 2280.0$ $2 - (I_{plate} - I_h) / 2$ 0 kN/m^3 0 mm 1 mm 1 mm 2.9 kN/m	mm ²		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support pl Modulus of elasticity Constant Length of plate beyond beam Total length of plate Thickness of plate Width of main beam Area of plate Distance from weld position the Supported materials detail Density of masonry on main Width of masonry on main be Height of masonry on main beam main Add dead force main beam (late n to CoG beam eam aterial not from masonry) ot from masonry)	UB 254x14 User S275 $p_{ysb} = 275$ E = 205000 ε = √(275N) $I_h = 150$ mm $I_{plate} = 285$ $t_{sb} = 8$ mm $B_{mb} = 146$ $A_{sbu} = t_{sb} ×$ $c_{yysb} = I_h / 2$ $ρ_{m,mb} = 200$ $b_{mmb} = 1000$ $h_{mmb} = 134$ $e_{mb} = 50$ m $P_{Gaddmb} = 2$	N/mm ² 0 N/mm^2 $1/\text{mm}^2 / p_{ysb}) =$ mm mm $I_{plate} = 2280.0$ $2 - (I_{plate} - I_h) / 2$ 0 kN/m^3 9 mm 3 mm	mm ²		
Torsion beam Masonry support plate Steel grade of support plate Design strength of support plate Design strength of support plate Constant Length of plate beyond beam Total length of plate Thickness of plate Width of main beam Area of plate Distance from weld position f Supported materials detail Density of masonry on main Width of masonry on main be Height of masonry on main be Eccentricity of main beam main Add dead force main beam (main)	late n to CoG beam eam aterial not from masonry) ot from masonry) ot from masonry)	UB 254x14 User S275 $p_{ysb} = 275$ E = 20500 $\varepsilon = \sqrt{(275N)}$ $l_{h} = 150$ mm $l_{plate} = 285$ $t_{sb} = 8$ mm $Bmb = 146$ $A_{sbu} = t_{sb} \times$ $c_{yysb} = l_h / 2$ $\rho_{m,mb} = 20$ $b_{mmb} = 134$ $e_{mb} = 50$ m $P_{Gaddmb} = 2$ $P_{Qaddmb} = 1$	N/mm ² 0 N/mm^2 $1/\text{mm}^2 / p_{ysb}) =$ mm $I_{plate} = 2280.0$ $2 - (I_{plate} - I_h) / 2$ 0 kN/m^3 0 mm 3 mm 2.9 kN/m $.9 \text{ kN/m}^3$	mm ²		

	Project Holmfie	eld, Bill lane, Woo	odale, Holmfirth	, HD9 1XX	Job no.	3000
Allcott Associates LLP Unit 3, The Fosse	Calcs for				Start page no./F	Revision
Fosse Way, Radford Semele		Masonry S	upport Beam			2
Warwickshire, CV31 1XN	Calcs by DJA	Calcs date 08/08/2019	Checked by	Checked date	Approved by	Approved da
Add dead force support beam						
Add live force support beam (r	not from masonr	y) $P_{Qaddsb} = 0$.	0 kN/m			
Geometry						
Cavity width		c = 100 mr				
Supported width of masonry			nb - C = 100 mm	I		
Biaxial stress effects in the		0)				
Maximum overall bending mor		M _x = 21.7 k				
Dist to NA combined section (, ,	$2 \times (A_{mb} + A_{sbu}))$		
Second moment of area of con				⊦ A _{sbu} × (D _{mb} / 2		= 8215 cm ²
Elastic section modulus of cor	nbined section		-	- y _{e,all}) = 883.47		
Section modulus of plate				m) = 10.67 cm ³ /	m	
Eccentricity of support beam n	-	e ₁ = 100 m				
Force of masonry on support	olate			P _{Gaddsb}) × γ _{fG} + F	$P_{\text{Qaddsb}} \times \gamma_{fQ} = 1.$	1 kN/m
Bending at heel			\times e ₁ = 0.1 kNm			
Moment capacity of plate		$M_c = 1.2 \times 10^{-1}$	$Z_{x,plate} \times p_{ysb} = 3$			
				S - Design stre	ngth exceeds	stress at h
Longitudinal stress due to ove	-		_{x,all} = 24.5 N/m			
Constant relating to Von Mises	s curve			= 548.4 N/mm ²		
Transverse bending stress rat	io limit	$\alpha_{\rm ts} = (C_{\rm fp}^2 -$	σ_1^2) / (2 × C _{fp} ×	p _{ysb}) = 0.995		
Transverse bending stress rat	io	$\alpha_{ls} = M_{x,plate}$	$M_{\rm c} = 0.032$			
		PASS - 1	Fransverse be	nding stress ra	atio less than a	allowable li
Deflection at toe						
Unfactored force on support a	ngle	$P_{1SLS} = b_{ms}$	$h_{\text{b}} \times h_{\text{msb}} \times \rho_{\text{m,sb}}$	+ P _{Gaddsb} + P _{Qadd}	_{dsb} = 0.8 kN/m	
Distance from weld to load pos	sition	$a_{m} = e_{1} = 1$	00 mm			
Length of load resultant to edg	je of plate	$b_m = I_h - e_1$	= 50 mm			
Dist from weld to load position	as ratio of leng		m + bm) = 0.667			
Effective second moment of in	ertia	_	/ 12 = 42667 m			
Deflection at toe		$\delta = (a_1^2 \times (3$	$B - a_{\rm I}) / 6) \times (P_{18})$	$s_{LS} \times (a_m + b_m)^3)$	$/(E_{S5950} \times I_{eff_de})$	_{ef}) = 0.05 mr
Deflection limit		δ _{lim} = 2.00				
			PA	ASS - Deflectio	n is within sp	ecified crite
Weld details - assume a full			••••••••••••••••••••••••••••••••••••••	ped cantilever	with the prop	at the weld
position and the fixed end a	t the centre of f					
Leg length of weld		Sweld = 6 mi				
Throat size of weld			2) × Sweld = 4.2			
Shear force at weld position				1) / (2 × B _{mb} / 2)), 1.4) = 3.4 kN	/m
Maximum possible force in pla	ite	$R_p = (I_h + E)$	$S_{mb}) imes t_{sb} imes p_{ysb} :$	= 652.1 kN		
Longitudinal shear between be	eam and plate	$R_1 = 2 \times R_p$	/ L = 303.3 kN	/m		
Horizontal shear between bea	m and plate			_b / 2) = 16.0 kN/		
Resultant weld force				= 0.304 kN/mm	Ì	
Strength of weld (Table 37)		$p_{weld} = 220$				
Capacity of full length weld			ld × p _{weld} = 0.93 PASS - Capaci	3 kN/mm <i>ty of weld exce</i>	eeds resultant	force on w
Torsional loading ULS				and the second states		
Loading of support beam mas	onry	$w_{1ULS} = (h_m)$	$_{\rm sb} imes b_{ m msb} imes ho_{ m m,sb}$	+ P_{Gaddsb}) × γ_{fG}	+ P _{Qaddsb} × γ _{fQ} =	= 1.12 kN/m
Loading of main beam mason				nb + P _{Gaddmb}) × γ		

Tedds Allcott Associates LLP	Project Holmfi	eld, Bill Iane, Woo	odale, Holmfirt	h, HD9 1XX	Job no.	3000
Unit 3, The Fosse Fosse Way, Radford Semele	Calcs for	Masonry S	upport Beam		Start page no./	Revision 3
Warwickshire, CV31 1XN	Calcs by DJA	Calcs date 08/08/2019	Checked by	Checked date	Approved by	Approved da
Self weight of support beam		W _{3ULS} = A _{sb}	u × ρsb × γfG = ().25 kN/m		
Torsional loading SLS						
Loading of support beam mas	sonry	$w_{1SLS} = h_{ms}$	$b \times b_{msb} \times \rho_{m,sb}$	+ PGaddsb + PQadd	_{isb} = 0.80 kN/m	1
Loading of main beam masor	nry	$w_{2SLS} = h_{mr}$	$_{\rm nb} imes b_{\rm mmb} imes ho_{\rm m,r}$	nb + PGaddmb + PQ	_{addmb} = 5.08 kN	/m
Self weight of support beam		$W_{3SLS} = A_{sb}$	u × ρsb = 0.18 Ι	kN/m		
Eccentricities						
Distance to shear centre of m	ain beam	$e_{0mb} = 0 m$	m			
Eccentricity of support beam	masonry	$e_{1mb} = (B_{mt})$	o + b _{msb}) / 2 + c	: - e _{mb} = 173 mm		
Eccentricity of main beam ma	asonry	$e_{2mb} = (B_{mb})$	- b _{mmb}) / 2 - e	_{mb} = -27 mm		
Eccentricity of support beam		$e_{3mb} = B_{mb}$	/ 2 + c _{yysb} = 81	mm		
Torsional effects						
Applied torque (ULS)		$T_{qULS} = abs$	S(W1ULS × C1mb ·	+ W _{2ULS} × e _{2mb} + V	W3ULS × e_{3mb}) =	0.01 kNm/m
Total torque (ULS)		$T_q = T_{qULS}$	× L = 0.06 kNn	n		
Applied torque (SLS)		T _{qSLS} = abs	S(W1SLS × C1mb -	W2SLS × e2mb + V	V3SLS × e3mb) = (0.02 kNm/m
Total torque (SLS)		$T_{qu} = T_{qSLS}$	× L = 0.07 kN	m		
STEEL BEAM TORSION DE	SIGN					
In accordance with BS5950	-1:2000 incorpo	orating Corrigend	dum No.1			
		0 0			Tedds calcul	lation version 2.0
Section details						
Section type		UB 254x14	46x37			
Section type Steel grade		S275				
Section type Steel grade Design stength		S275 p _{yw} = p _y = 2	275 N/mm ²			
Section type Steel grade Design stength Constant		S275 p _{yw} = p _y = 2 ε = √(275 I	275 N/mm² N/mm² / p _y) = 1			
Section type Steel grade Design stength Constant Geometry - Beam unrestrain	ned against late	S275 p _{yw} = p _y = 2 ε = √(275 l eral-torsional bu	275 N/mm² N/mm² / p _y) = 1 ckling betwee			
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span		S275 $p_{yw} = p_y = 2$ $\varepsilon = \sqrt{275}$ eral-torsional but L = 4300 r	275 N/mm² N/mm² / p _y) = 1 ckling betwee nm			
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buc	kling	S275 p _{yw} = p _y = 2 ε = √(275 l eral-torsional bu	275 N/mm² N/mm² / p _y) = 1 ckling betwee nm			
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buc Compression flanges laterally	kling / restrained	S275 $p_{yw} = p_y = 2$ $\varepsilon = \sqrt{275}$ eral-torsional but L = 4300 r	275 N/mm² N/mm² / p _y) = 1 ckling betwee nm			
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buc Compression flanges laterally Both flanges free to rotate on	kling / restrained plan	S275 p _{yw} = p _y = 2 ε = √(275 I eral-torsional bu⊄ L = 4300 r L _{LT} = 5000	275 N/mm² N/mm² / p _y) = 1 ckling betwee nm mm	en supports.		
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buck Compression flanges laterally Both flanges free to rotate on Effective length for LT bucklin	ckling / restrained plan ng	S275 $p_{yw} = p_y = 2$ $\varepsilon = \sqrt{275}$ eral-torsional but L = 4300 r $L_{LT} = 5000$ $L_{E_{LT}} = L_{LT}$	275 N/mm ² N/mm ² / p _y) = 1 ckling betwee nm mm × 1.0 = 5000 r	en supports. nm		
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buck Compression flanges laterally Both flanges free to rotate on Effective length for LT bucklin Loading - Torsional loading	ckling restrained plan g comprises on	S275 $p_{yw} = p_y = 2$ $\varepsilon = \sqrt{275}$ F eral-torsional but L = 4300 m $L_{LT} = 5000$ $L_{E_{LT}} = L_{LT}$ ly full-length unit	275 N/mm ² N/mm ² / p _y) = 1 ckling betwee nm mm × 1.0 = 5000 r formly distrib	en supports. nm uted load(s)		
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buck Compression flanges laterally Both flanges free to rotate on Effective length for LT bucklin Loading - Torsional loading Internal forces & moments	ckling restrained plan g comprises on	S275 $p_{yw} = p_y = 2$ $\varepsilon = \sqrt{275}$ for $L = \sqrt{275}$ for $L = \sqrt{275}$ for $L = \sqrt{275}$ for $L_{LT} = \sqrt{275}$ for $L_{LT} = \sqrt{2000}$ $L_{LT} = \sqrt{2000}$ $L_{E_{LT}} = L_{LT}$ for full-length united for factored load	275 N/mm ² N/mm ² / p _y) = 1 ckling betwee nm mm × 1.0 = 5000 r formly distrib ling for uls de	en supports. nm uted load(s)		
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buck Compression flanges laterally Both flanges free to rotate on Effective length for LT bucklin Loading - Torsional loading	ckling restrained plan g comprises on	S275 $p_{yw} = p_y = 3$ $\varepsilon = \sqrt{275}$ eral-torsional bunch L = 4300 m $L_{LT} = 5000$ $L_{E_LT} = L_{LT}$ ly full-length united for factored load $F_{vy} = 20.2$	275 N/mm ² N/mm ² / p _y) = 1 ckling betwee nm mm × 1.0 = 5000 r formly distrib ling for uls de	en supports. nm uted load(s)		
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buck Compression flanges laterally Both flanges free to rotate on Effective length for LT bucklin Loading - Torsional loading Internal forces & moments Applied shear force	ckling restrained plan g comprises on	S275 $p_{yw} = p_y = 3$ $\varepsilon = \sqrt{275}$ eral-torsional bunch L = 4300 m $L_{LT} = 5000$ $L_{E_LT} = L_{LT}$ ly full-length united for factored load $F_{vy} = 20.2$	275 N/mm ² N/mm ² / p _y) = 1 ckling betwee nm mm × 1.0 = 5000 r formly distrib ling for uls de kN = 21.67 kNm	en supports. nm uted load(s)		
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buck Compression flanges laterally Both flanges free to rotate on Effective length for LT bucklin Loading - Torsional loading Internal forces & moments Applied shear force Maximum bending moment Applied torque Minor axis bending moment	ckling restrained plan g comprises on	S275 $p_{yw} = p_y = 2$ $\varepsilon = \sqrt{275}$ F eral-torsional bunch L = 4300 m $L_{LT} = 5000$ $L_{E_LT} = L_{LT}$ ly full-length united der factored load $F_{vy} = 20.2$ $M_{LT} = M_x =$ $T_q = 0.06$ F $M_y = 0$ kNm	275 N/mm ² N/mm ² / p _y) = 1 ckling betwee nm mm × 1.0 = 5000 r formly distrib ling for uls de kN = 21.67 kNm	en supports. nm uted load(s)		
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buck Compression flanges laterally Both flanges free to rotate on Effective length for LT bucklin Loading - Torsional loading Internal forces & moments Applied shear force Maximum bending moment Applied torque	ckling restrained plan g comprises on	S275 $p_{yw} = p_y = 2$ $\varepsilon = \sqrt{275}$ F eral-torsional but L = 4300 m $L_{LT} = 5000$ $L_{E_LT} = L_{LT}$ ly full-length unit der factored load $F_{vy} = 20.2$ $M_{LT} = M_x =$ $T_q = 0.06$ F	275 N/mm ² N/mm ² / p _y) = 1 ckling betwee nm mm × 1.0 = 5000 r formly distrib ling for uls de kN = 21.67 kNm	en supports. nm uted load(s)		
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buck Compression flanges laterally Both flanges free to rotate on Effective length for LT bucklin Loading - Torsional loading Internal forces & moments Applied shear force Maximum bending moment Applied torque Minor axis bending moment Compression force	kling v restrained plan g comprises on on member und	S275 $p_{yw} = p_y = 3$ $\varepsilon = \sqrt{275}$ F eral-torsional bunch L = 4300 m $L_{LT} = 5000$ $L_{LT} = 5000$ $L_{E_LT} = L_{LT}$ Hy full-length united for factored load $F_{vy} = 20.2$ $M_{LT} = M_x =$ $T_q = 0.06$ H $M_y = 0$ kNM $F_c = 0$ kN	275 N/mm ² N/mm ² / p _y) = 1 ckling between mm × 1.0 = 5000 m formly distrib ling for uls de kN : 21.67 kNm Mm	en supports. nm uted load(s)		
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buck Compression flanges laterally Both flanges free to rotate on Effective length for LT bucklin Loading - Torsional loading Internal forces & moments Applied shear force Maximum bending moment Applied torque Minor axis bending moment Compression force Equivalent uniform momen EUM factor (Cl. 4.3.6.6 and T	kling v restrained plan g comprises on on member und t factors 18)	S275 $p_{yw} = p_y = 2$ $\varepsilon = \sqrt{275}$ F eral-torsional bunch L = 4300 m $L_{LT} = 5000$ $L_{E_LT} = L_{LT}$ ly full-length united der factored load $F_{vy} = 20.2$ $M_{LT} = M_x =$ $T_q = 0.06$ F $M_y = 0$ kNm	275 N/mm ² N/mm ² / p _y) = 1 ckling between mm × 1.0 = 5000 m formly distrib ling for uls de kN : 21.67 kNm Mm	en supports. nm uted load(s)		
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buck Compression flanges laterally Both flanges free to rotate on Effective length for LT bucklin Loading - Torsional loading Internal forces & moments Applied shear force Maximum bending moment Applied torque Minor axis bending moment Compression force Equivalent uniform momen EUM factor (CI. 4.3.6.6 and T	kling v restrained plan g comprises on on member und t factors 18) eters	S275 $p_{yw} = p_y = 3$ $\varepsilon = \sqrt{275}$ F eral-torsional bunch L = 4300 m $L_{LT} = 5000$ $L_{E_LT} = L_{LT}$ ly full-length united der factored load $F_{vy} = 20.2$ $M_{LT} = M_x =$ $T_q = 0.06$ F $M_y = 0$ kN $F_c = 0$ kN $m_{LT} = 1.00$	275 N/mm ² N/mm ² / p _y) = 1 ckling between mm × 1.0 = 5000 m formly distrib ling for uls de kN • 21.67 kNm KNm m	n supports. nm uted load(s) sign	Appordis D	
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buck Compression flanges laterally Both flanges free to rotate on Effective length for LT bucklin Loading - Torsional loading Internal forces & moments Applied shear force Maximum bending moment Applied torque Minor axis bending moment Compression force Equivalent uniform momen EUM factor (Cl. 4.3.6.6 and T Torsional deflection parame Beam is torsion fixed and war	kling v restrained plan g comprises on on member und on member und f factors 18) eters rping free at eac	S275 $p_{yw} = p_y = 2$ $\varepsilon = \sqrt{275}$ for $L = 4300$ m L = 4300 m $L_{LT} = 5000$ $L_{LT} = 5000$ $L_{LT} = L_{LT}$ by full-length united for factored load $F_{vy} = 20.2$ $M_{LT} = M_x =$ $T_q = 0.06$ H $M_y = 0$ kNm $F_c = 0$ kN $m_{LT} = 1.000$ wh end. (as defined	275 N/mm ² N/mm ² / p _y) = 1 ckling between mm × 1.0 = 5000 m formly distrib ling for uls de kN • 21.67 kNm «Nm m	n supports. nm uted load(s) sign	Appendix B ca	use 4
Section type Steel grade Design stength Constant Geometry - Beam unrestrain Effective span Length of segment for LT buck Compression flanges laterally Both flanges free to rotate on Effective length for LT bucklin Loading - Torsional loading Internal forces & moments Applied shear force Maximum bending moment Applied torque Minor axis bending moment Compression force Equivalent uniform momen EUM factor (CI. 4.3.6.6 and T	ckling y restrained plan g y comprises on on member und on member und t factors 18) eters rping free at eac lerivative of twis	S275 $p_{yw} = p_y = 2$ $\varepsilon = \sqrt{275 \text{ H}}$ eral-torsional bur L = 4300 m $L_{LT} = 5000$ $L_{E_LT} = L_{LT}$ ly full-length unit der factored load $F_{vy} = 20.2$ $M_{LT} = M_x =$ $T_q = 0.06 \text{ H}$ $M_y = 0 \text{ kNr}$ $F_c = 0 \text{ kN}$ $m_{LT} = 1.00$ th end. (as defined $z_1 = 0 \text{ mm}$	275 N/mm ² N/mm ² / p _y) = 1 ckling between mm × 1.0 = 5000 m formly distrib ling for uls de kN • 21.67 kNm «Nm m	nm uted load(s) sign	Appendix B ca	use 4

	Project Holmf	ield, Bill Iane, Wo	odale, Holmfirt	h, HD9 1XX	Job no. 2	3000
Allcott Associates LLP	Calcs for				Start page no./	Revision
Unit 3, The Fosse Fosse Way, Radford Semele		Masonry S	upport Beam			4
Warwickshire, CV31 1XN	Calcs by DJA	Calcs date 08/08/2019	Checked by	Checked date	Approved by	Approved da
First derivative of angle of twis	t		1 ()	a / L × [L² / (2 × a		
		sinh(z₁ / a)	- tanh(L / (2 ×	a)) $\times \cosh(z_1 / a)$)] \times 1 rads = 1.	14×10 ⁻³
		rads/m				((2))
Third derivative of angle of twi	st			a^2) × a/L × [sinh(personal de la contra de la con	/ (2 × a)) ×
				3.82×10 ⁻⁴ rads/m		- 2 (1 2)
Angle of twist		4.55) × a / L × [L ² / (2	, ,	
		13-A		× a)) × sinh(z₂ / a		
Second derivative of angle of	twist			a) × a / L × [cosh		. / (2 × a)) ×
		sinn(z ₂ / a)	$-1] \times 1$ rads =	= -7.58×10 ⁻⁴ rads	/m²	
Design parameters		2. 13 art ve				
Total angle of twist			= 0.002 rads			
First derivative of ϕ) = 1.14×10 ⁻³ r			
Second derivative of ϕ			' ₂) = 7.58×10 ⁻⁴			
Third derivative of ϕ		φ''' = abs(φ	"' ₁) = 8.82×10 ^{-/}	4 rads/m³		
Section classification						
		b / T = 6.7				
		d / t = 34. 8				
				Fc / (d × t × p _{yw}))) = 0.000	
		$r_{2s} = F_c / (A)$	A _g × p _{yw}) = 0.00			ation io plac
				Sec	ction classifica	ation is plas
Shear capacity (parallel to y	-axis)	E 00.0				
Design shear force	0.0	$F_{vy} = 20.2$		C 4 LN		
Design shear resistance (Cl. 4	1.2.3)	$P_{vy} = 0.6 \times$	$p_y \times A_{vy} = 26$	0.1 KN		Pass - She
Moment capacity (x-axis)						
Design bending moment		M _x = 21.7	kNm			
Moment capacity		M _{cxu} = p _y ×	S _x = 132.9 kN	Im		
Moment capacity low shear (C	I. 4.2.5.1)	$M_{cx} = min($	$p_y imes S_x$, 1.2 × p	o _y × Z _x) = 132.9 k	Nm	
		P	ass - Moment	t capacity excee	eds design be	nding mom
Lateral torsional buckling						
Effective length for lateral tors	ional buckling	$L_{E_{LT}} = 500$)0 mm			
Slenderness ratio		$\lambda = L_{E_{LT}} /$	r _y =144			
Buckling parameter		u = 0.890				
Flange ratio		η = 0.5				
Torsional index		x = 24.3	<u></u>			
Slenderness factor			- 0.05 × (λ / x) ²	$(2)^{0.25} = 0.78$		
Ratio - cl 4.3.6.9		$\beta_{w} = 1.0 =$				
Equvalent slenderness – cl 4.3			$1 \times \lambda \times \sqrt{(\beta_w)} = 9$			
Limiting slendernes – Annex E	52.2		$\sqrt{(\pi^2 \times \text{Ess}_{5950})}$			
		•	$\sum_{s_{5950}} / \lambda_{LT}^2 = 2$		466	
Euler stress		$\eta_{LT} = \max$	1.U × (λLT - λL	.0) / 1000, 0) = 0 .	400	
Euler stress Perry factor				10 - 00000000	2 4 9 7	
Perry factor		φ _{LT} = (p _y +	(η _{LT} + 1) × p _E)	/ 2 = 286606886		
		$\phi_{LT} = (p_y + p_b = p_E \times p_b)$	(η _{LT} + 1) × p _E)	² - p _E × p _y)) = 126		

Tedds	Project Holmfi	Job no. 2	Job no. 23000			
Allcott Associates LLP Unit 3, The Fosse	Calcs for		_,		Start page no./	Revision
Fosse Way, Radford Semele		Masonry S	upport Beam			5
Warwickshire, CV31 1XN	Calcs by DJA	Calcs date 08/08/2019	Checked by	Checked date	Approved by	Approved da
Max moment governing bucklir	ig resistance	M _{LT} = 21.7	kNm			
Equiv uniform moment factor for	or LTB	m _{L⊺} = 1.00				
		M _b / m _{LT} =	60.9 kNm			
					Pass - lat.	tors. buckli
Buckling under combined be	-					
For simplicity, a conservative c though these do not necessaril					separate load	l effects, eve
Span factor	y all occur at ti	L / a = 3.57	-	iber.		
Angle of twist		φ = 0.002 r				
Second derivative of ϕ		·	10 ⁻⁶ rads/m ²			
Induced minor axis moment		•	<pre></pre>	3 kNm		
Normal stress at flange tip due	to M _{vt}	-	$y_{y} = 0 \text{ N/mm}^{2}$	• (111)		
Normal stress at flange tip due			-	rad = 1 N/mm²		
Interaction index	to waiping			+ σ _w) / p _y × (1 + 0	$1.5 \times M_{\rm e} \times m_{\rm eT}$	$(M_{\rm b}) = 0.36$
				nbined bending		
Loopl conceity under combin	ad handina 0	Anvalan		5		
Local capacity under combin For simplicity, a conservative c	-		um etrassas d	lue to each of the	senarate loar	effects ov
though these do not necessaril		-			separate load	i enecio, eve
Max. direct stress due to M _x	,		Z _x = 50 N/mm ²			
Combined stress - eqn 2.22			σ _w = 52 N/mm			
Design strength		py = 275 N		•		
		p)			Pass -	Local capad
Combined shear stresses - S	CI.P.057 secti	ion 2 3				,
For simplicity, a conservative d			um shear stre	sses due to each	of the separa	te load effec
even though these do not nece						
Max shear stresses due to ben	ding in web	$\tau_{bw} = F_{vv} \times I$	$Q_w / (I_x \times t) =$	14 N/mm ²		
	0	· • · · · ,				
Max shear stresses due to ben		-	$Q_{\rm f} / (I_{\rm x} \times T) = 3$			
Max shear stresses due to ben Max shear stresses due to tors	ding in flange	$\tau_{bf} = F_{vy} \times C$. ,	N/mm ²		
	ding in flange ion in web	$\tau_{bf} = F_{vy} \times G$ $\tau_{tw} = abs(G$	$Q_f / (I_x \times T) = 3$	N/mm²) = 1 N/mm²		
Max shear stresses due to tors	ding in flange ion in web ion in flange	$\tau_{bf} = F_{vy} \times G$ $\tau_{tw} = abs(G$ $\tau_{tf} = abs(G$	$Q_{f} / (I_{x} \times T) = 3$ × t × \phi' / 1rad × T × \phi' / 1 rad	N/mm²) = 1 N/mm²	N/mm ²	
Max shear stresses due to tors Max shear stresses due to tors	ding in flange ion in web ion in flange ping in flange	$\tau_{bf} = F_{vy} \times G$ $\tau_{tw} = abs(G$ $\tau_{tf} = abs(G$ $\tau_{wf} = abs(- $	$\Omega_{f} / (I_x \times T) = 3$ $\times t \times \phi' / 1 rad$ $\times T \times \phi' / 1 rad$ $E_{S5950} \times S_{w1} \times C_{star}$	N/mm²) = 1 N/mm² d) = 1 N/mm²		
Max shear stresses due to tors Max shear stresses due to tors Max shear stresses due to war	ding in flange ion in web ion in flange ping in flange rping in web	$\tau_{bf} = F_{vy} \times C$ $\tau_{tw} = abs(G)$ $\tau_{tf} = abs(G)$ $\tau_{vf} = abs(-1)$ $\tau_{vtw} = \tau_{tw} \times C$	$\begin{aligned} & \Omega_{f} / (I_{x} \times T) = 3 \\ & \times t \times \phi' / 1 \text{ rad} \\ & \times T \times \phi' / 1 \text{ rad} \\ & \Sigma_{55950} \times S_{w1} \times \\ & (1 + 0.5 \times M_{x} \times M_{y}) \end{aligned}$	N/mm ²) = 1 N/mm ² d) = 1 N/mm ² ¢''' / 1 rad / T) = 0	mm²	
Max shear stresses due to torsi Max shear stresses due to torsi Max shear stresses due to warp Amp shear stress torsion & war Amp shear stress torsion & war	ding in flange ion in web ion in flange ping in flange rping in web rping in flange	$\tau_{bf} = F_{vy} \times C$ $\tau_{tw} = abs(G)$ $\tau_{tf} = abs(G)$ $\tau_{vrf} = abs(-1)$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtf} = (\tau_{tf} + \tau_{tw})$	$\begin{aligned} & \sum_{k=1}^{\infty} \left(\left \mathbf{I}_{k} \times \mathbf{T} \right\rangle \right) &= 3 \\ & \times \mathbf{t} \times \boldsymbol{\phi}' \ / \ 1 \ rad \\ & \times \mathbf{T} \times \boldsymbol{\phi}' \ / \ 1 \ rad \\ & \sum_{k=1}^{\infty} \sum_$	N/mm ²) = 1 N/mm ² d) = 1 N/mm ² $\phi^{'''}$ / 1 rad / T) = 0 < m _{LT} / M _b) = 1 N/i	mm²	
Max shear stresses due to tors Max shear stresses due to tors Max shear stresses due to war Amp shear stress torsion & war	ding in flange ion in web ion in flange ping in flange rping in web rping in flange e to bending, f	$\tau_{bf} = F_{vy} \times C$ $\tau_{tw} = abs(G)$ $\tau_{tf} = abs(-1)$ $\tau_{vtr} = abs(-1)$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtr} = (\tau_{tf} + \tau_{tr})$ torsion & warping	$\begin{aligned} & \sum_{k=1}^{\infty} \left(\left \mathbf{I}_{k} \times \mathbf{T} \right\rangle \right) &= 3 \\ & \times \mathbf{t} \times \boldsymbol{\phi}' \ / \ 1 \ rad \\ & \times \mathbf{T} \times \boldsymbol{\phi}' \ / \ 1 \ rad \\ & \sum_{k=1}^{\infty} \sum_$	N/mm ²) = 1 N/mm ² d) = 1 N/mm ² d) = 1 N/mm ² d) = 1 N/m ² (m _{LT} / M _b) = 1 N/m (M _x × m _{LT} / M _b) =	mm²	
Max shear stresses due to tors Max shear stresses due to tors Max shear stresses due to war Amp shear stress torsion & war Amp shear stress torsion & war Combined shear stresses due	ding in flange ion in web ion in flange ping in flange rping in web rping in flange e to bending , f	$\tau_{bf} = F_{vy} \times C$ $\tau_{tw} = abs(G$ $\tau_{tf} = abs(G$ $\tau_{wf} = abs(-1)$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtf} = (\tau_{tf} + \tau_{tw})$ $\tau_{vtf} = (\tau_{tf} + \tau_{tw})$ $\tau_{w} = \tau_{bw} + \tau_{tw}$	$Q_t / (I_x \times T) = 3$ $\times t \times \phi' / 1 rad$ $\times T \times \phi' / 1 rad$ $E_{55950} \times S_{w1} \times (1 + 0.5 \times M_x \times w_t) \times (1 + 0.5 \times M_y)$ $w_t \to (1 + 0.5 \times M_y) \times (1 + 0.5 \times M_y)$	N/mm ²) = 1 N/mm ² d) = 1 N/mm ² d) = 1 N/mm ² d) = 1 N/m ² (m _{LT} / M _b) = 1 N/m (M _x × m _{LT} / M _b) =	mm²	
Max shear stresses due to torsi Max shear stresses due to torsi Max shear stresses due to warp Amp shear stress torsion & war Amp shear stress torsion & war Combined shear stresses due Combined shear stresses in we	ding in flange ion in web ion in flange ping in flange rping in web rping in flange e to bending , f	$\tau_{bf} = F_{vy} \times C$ $\tau_{tw} = abs(G$ $\tau_{tf} = abs(- \tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtf} = (\tau_{tf} + \tau_{vt})$ $\tau_{w} = \tau_{bw} + \tau$ $\tau_{f} = \tau_{bf} + \tau_{vt}$	$\begin{aligned} & \sum_{k=1}^{\infty} \left(\left \mathbf{I}_{k} \times \mathbf{T} \right\rangle \right) &= 3 \\ & \times \mathbf{t} \times \boldsymbol{\phi}' \ / \ 1 \ rad \\ & \times \mathbf{T} \times \boldsymbol{\phi}' \ / \ 1 \ rad \\ & \sum_{k=1}^{\infty} \sum_$	N/mm ²) = 1 N/mm ² d) = 1 N/mm ² $\phi^{'''} / 1 rad / T) = 0\langle m_{LT} / M_b) = 1 N/t\langle M_x \times m_{LT} / M_b) =$	mm²	
Max shear stresses due to torsi Max shear stresses due to torsi Max shear stresses due to war Amp shear stress torsion & war Amp shear stress torsion & war Combined shear stresses due Combined shear stresses in the	ding in flange ion in web ion in flange ping in flange rping in web rping in flange e to bending , f	$\tau_{bf} = F_{vy} \times C$ $\tau_{tw} = abs(G$ $\tau_{tf} = abs(- \tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtf} = (\tau_{tf} + \tau_{vt})$ $\tau_{w} = \tau_{bw} + \tau$ $\tau_{f} = \tau_{bf} + \tau_{vt}$	$Q_{f} / (I_{x} \times T) = 3$ $\times t \times \phi' / 1 rad$ $\times T \times \phi' / 1 rad$ $E_{55950} \times S_{w1} \times$ $(1 + 0.5 \times M_{x} \times$ $w_{f}) \times (1 + 0.5 \times$ $Q_{f}:$ $y_{tw} = 15 \text{ N/mm}$	N/mm ²) = 1 N/mm ² d) = 1 N/mm ² $\phi^{'''} / 1 rad / T) = 0$ $\langle m_{LT} / M_b) = 1 N/t$ $\langle M_x \times m_{LT} / M_b) =$ r^2	mm²	shear stress
Max shear stresses due to torsi Max shear stresses due to torsi Max shear stresses due to war Amp shear stress torsion & war Amp shear stress torsion & war Combined shear stresses due Combined shear stresses in the Shear strength	ding in flange ion in web ion in flange ping in flange rping in web rping in flange e to bending , f	$\tau_{bf} = F_{vy} \times C$ $\tau_{tw} = abs(G$ $\tau_{tf} = abs(- \tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtf} = (\tau_{tf} + \tau_{vt})$ $\tau_{w} = \tau_{bw} + \tau$ $\tau_{f} = \tau_{bf} + \tau_{vt}$	$\begin{aligned} & \sum_{k=1}^{\infty} \left(\left \mathbf{I}_{k} \times \mathbf{T} \right\rangle \right) &= 3 \\ & \times \mathbf{t} \times \boldsymbol{\phi}' \ / \ 1 \ rad \\ & \times \mathbf{T} \times \boldsymbol{\phi}' \ / \ 1 \ rad \\ & \sum_{k=1}^{\infty} \sum_$	N/mm ²) = 1 N/mm ² d) = 1 N/mm ² $\phi^{'''} / 1 rad / T) = 0$ $\langle m_{LT} / M_b) = 1 N/t$ $\langle M_x \times m_{LT} / M_b) =$ r^2	mm² 1 N/mm²	shear stress
Max shear stresses due to torsi Max shear stresses due to torsi Max shear stresses due to warp Amp shear stress torsion & war Amp shear stress torsion & war Combined shear stresses due Combined shear stresses in the Shear strength Twist check	ding in flange ion in web ion in flange ping in flange rping in web rping in flange e to bending, f eb	$\tau_{bf} = F_{vy} \times C$ $\tau_{tw} = abs(G$ $\tau_{tf} = abs(G$ $\tau_{wf} = abs(-1)$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtf} = (\tau_{tf} + \tau)$ $torsion & warpin$ $\tau_{w} = \tau_{bw} + \tau$ $\tau_{f} = \tau_{bf} + \tau_{vt}$ $p_{v} = 0.6 \times p$	$Q_{f} / (I_{x} \times T) = 3$ × t × $\phi' / 1$ rad × T × $\phi' / 1$ rad Es5950 × S _{W1} × (1 + 0.5 × M _x × wf) × (1 + 0.5 × M _x = 15 N/mm r = 4 N/mm ² Dy = 165 N/mm	N/mm ²) = 1 N/mm ² d) = 1 N/mm ² $\phi^{'''} / 1 \text{ rad } / T) = 0$ $\langle m_{LT} / M_b) = 1 N/t$ $\langle M_x \times m_{LT} / M_b) =$ r^2	mm² 1 N/mm²	shear stress
Max shear stresses due to torsi Max shear stresses due to torsi Max shear stresses due to warp Amp shear stress torsion & war Amp shear stress torsion & war Combined shear stresses due Combined shear stresses in we Combined shear stresses in fla Shear strength Twist check Total applied torque (unfactored	ding in flange ion in web ion in flange ping in flange ping in web ping in flange e to bending, f eb nge	$\tau_{bf} = F_{vy} \times C$ $\tau_{tw} = abs(G$ $\tau_{tf} = abs(G$ $\tau_{wf} = abs(-1)$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtr} = (\tau_{tf} + \tau_{vt})$ $\tau_{w} = \tau_{bw} + \tau$ $\tau_{f} = \tau_{bf} + \tau_{vt}$ $p_{v} = 0.6 \times p$ $T_{qu} = 0.07 H$	$Q_{t} / (I_{x} \times T) = 3$ × t × $\phi' / 1$ rad × T × $\phi' / 1$ rad Es5950 × Sw1 × (1 + 0.5 × M _x × (1 + 0.5 × M _x × wr) × (1 + 0.5 × eg: vtw = 15 N/mm ² F = 4 N/mm ² Dy = 165 N/mm	N/mm ²) = 1 N/mm ² d) = 1 N/mm ² $\phi^{'''} / 1 rad / T) = 0$ $\langle m_{LT} / M_b) = 1 N/t$ $\langle M_x \times m_{LT} / M_b) =$ r^2 Pass	mm² 1 N/mm²	shear stres:
Max shear stresses due to torsi Max shear stresses due to torsi Max shear stresses due to warp Amp shear stress torsion & war Amp shear stress torsion & war Combined shear stresses due Combined shear stresses in the Combined shear stresses in flat Shear strength Twist check Total applied torque (unfactored Maximum twist under sls loadin	ding in flange ion in web ion in flange ping in flange ping in web ping in flange e to bending, f eb nge	$\tau_{bf} = F_{vy} \times C$ $\tau_{tw} = abs(G$ $\tau_{tf} = abs(-1)$ $\tau_{vtr} = abs(-1)$ $\tau_{vtr} = \tau_{tw} \times C$ $\tau_{vtr} = \tau_{tw} + \tau$ $\tau_{t} = \tau_{bf} + \tau_{vtr}$ $p_v = 0.6 \times p$ $T_{qu} = 0.07 \text{ M}$ $\varphi_{sls} = \varphi \times T_{cr}$	$Q_{t} / (I_{x} \times T) = 3$ × t × $\phi' / 1$ rad × T × $\phi' / 1$ rad Es5950 × Sw1 × (1 + 0.5 × M _x × vt) × (1 + 0.5 × eg: vtw = 15 N/mm r = 4 N/mm ² by = 165 N/mm	N/mm ²) = 1 N/mm ² d) = 1 N/mm ² $\phi^{'''} / 1 rad / T) = 0$ $\langle m_{LT} / M_b) = 1 N/t$ $\langle M_x \times m_{LT} / M_b) =$ r^2 Pass	mm² 1 N/mm²	shear stress
Max shear stresses due to torsi Max shear stresses due to torsi Max shear stresses due to warp Amp shear stress torsion & war Amp shear stress torsion & war Combined shear stresses due Combined shear stresses in we Combined shear stresses in fla Shear strength Twist check Total applied torque (unfactored	ding in flange ion in web ion in flange ping in flange ping in web ping in flange e to bending, f eb nge	$\tau_{bf} = F_{vy} \times C$ $\tau_{tw} = abs(G$ $\tau_{tf} = abs(G$ $\tau_{wf} = abs(-1)$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtw} = \tau_{tw} \times C$ $\tau_{vtr} = (\tau_{tf} + \tau_{vt})$ $\tau_{w} = \tau_{bw} + \tau$ $\tau_{f} = \tau_{bf} + \tau_{vt}$ $p_{v} = 0.6 \times p$ $T_{qu} = 0.07 H$	$Q_{t} / (I_{x} \times T) = 3$ × t × $\phi' / 1$ rad × T × $\phi' / 1$ rad Es5950 × Sw1 × (1 + 0.5 × M _x × vt) × (1 + 0.5 × eg: vtw = 15 N/mm r = 4 N/mm ² by = 165 N/mm	N/mm ²) = 1 N/mm ² d) = 1 N/mm ² $\phi^{'''} / 1 rad / T) = 0$ $\langle m_{LT} / M_b) = 1 N/t$ $\langle M_x \times m_{LT} / M_b) =$ r^2 Pass	mm² 1 N/mm²	shear stress Pass - Tw
Max shear stresses due to torsi Max shear stresses due to torsi Max shear stresses due to war Amp shear stress torsion & war Amp shear stress torsion & war Combined shear stresses due Combined shear stresses in the Combined shear stresses in flat Shear strength Twist check Total applied torque (unfactored Maximum twist under sls loadin	ding in flange ion in web ion in flange ping in flange ping in web ping in flange e to bending, f eb nge	$\tau_{bf} = F_{vy} \times C$ $\tau_{tw} = abs(G$ $\tau_{tf} = abs(-1)$ $\tau_{vtr} = abs(-1)$ $\tau_{vtr} = \tau_{tw} \times C$ $\tau_{vtr} = \tau_{tw} + \tau$ $\tau_{t} = \tau_{bf} + \tau_{vtr}$ $p_v = 0.6 \times p$ $T_{qu} = 0.07 \text{ M}$ $\varphi_{sls} = \varphi \times T_{cr}$	$Q_{t} / (I_{x} \times T) = 3$ × t × $\phi' / 1$ rad × T × $\phi' / 1$ rad Es5950 × Sw1 × (1 + 0.5 × M _x × (1 + 0.5 × M _x × wt) × (1 + 0.5 × M _y = 15 N/mm = 4 N/mm ² Dy = 165 N/mm	N/mm ²) = 1 N/mm ² d) = 1 N/mm ² $\phi^{'''} / 1 rad / T) = 0$ $\langle m_{LT} / M_b) = 1 N/t$ $\langle M_x \times m_{LT} / M_b) =$ r^2 Pass	mm² 1 N/mm²	
Max shear stresses due to torsi Max shear stresses due to torsi Max shear stresses due to warp Amp shear stress torsion & war Amp shear stress torsion & war Combined shear stresses due Combined shear stresses in the Combined shear stresses in fla Shear strength Twist check Total applied torque (unfactored Maximum twist under sls loadin Twist limit	ding in flange ion in web ion in flange ping in flange ping in web ping in flange e to bending, f eb nge	$\tau_{bf} = F_{vy} \times C$ $\tau_{tw} = abs(G$ $\tau_{tf} = abs(-1)$ $\tau_{vtr} = abs(-1)$ $\tau_{vtr} = \tau_{tw} \times C$ $\tau_{vtr} = \tau_{tw} + \tau$ $\tau_{t} = \tau_{bf} + \tau_{vtr}$ $p_v = 0.6 \times p$ $T_{qu} = 0.07 \text{ M}$ $\varphi_{sls} = \varphi \times T_{cr}$	$Q_{r} / (I_{x} \times T) = 3$ $\times t \times \phi' / 1 rad \times T \times \phi' / 1 rad Es5950 \times S_{w1} \times (1 + 0.5 \times M_{x} \times (1 + 0.5 \times M_{x} \times (1 + 0.5 \times M_{y}) \times (1 + 0.5 \times M_{y})) \times (1 + 0.5 \times M_{y}) = 15 N/mm^{2}M_{r} = 4 N/mm^{2}Q_{r} = 15 N/mm^{2}Q_{r} = 165 N/mm^{2}Q_{r} = 165 N/mm^{2}$	N/mm ²) = 1 N/mm ² d) = 1 N/mm ² $\phi^{'''} / 1 rad / T) = 0$ $\langle m_{LT} / M_b) = 1 N/t$ $\langle M_x \times m_{LT} / M_b) =$ r^2 Pass	mm² 1 N/mm²	

Tekla Tedds	Project				Job no.		
Allcott Associates LLP		Holmfield, Bill lane, Woodale, Holmfirth, HD9 1XX				23000	
Unit 3, The Fosse Fosse Way, Radford Semele	Calcs for Masonry Support Beam				Start page no./Revision 6		
Warwickshire, CV31 1XN	Calcs by DJA	Calcs date 08/08/2019	Checked by	Checked date	Approved by	Approved date	

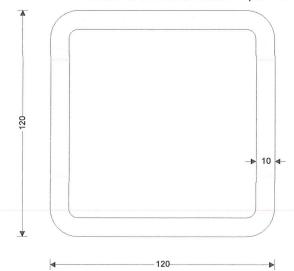
Pass - Deflection within specified limit

Project Job no. Tedds Holmfield, Bill Iane, Woodale, Holmfirth, HD9 1XX 23000 Allcott Associates LLP Calcs for Start page no./Revision Unit 3, The Fosse, Support Column 1 Radford Semele, Learnington Spa CV31 1XN Calcs by Calcs date Checked by Checked date Approved by Approved date DJA 08/08/2019 sendi

STEEL COLUMN DESIGN

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Tedds calculation version 1.1.04


Design summary

Description	Unit	Provided	Required	Utilisation	Result
Shear resistance (y-y)	kN	341	40	0.119	PASS
Axial compression	kN	1180	27	0.023	PASS
Bending resistance (y-y)	kNm	48	43	0.901	PASS
Combined bending & axial	kNm	48	43	0.901	PASS
Buckling in compression	kN	1029	27	0.026	PASS
Buckling in bending	kNm	48	43	0.901	PASS
Combined buckling				0.938	PASS

Partial factors - Section 6.1

Resistance of cross-sections	γмо = 1
Resistance of members to instability	γ _{M1} = 1

Resistance of cross-sections in tension to fracture $\gamma_{M2} = 1.1$

SHS 120x120x10.0 (Tata Steel Celsius) Section depth, h, 120 mm Section breadth, b, 120 mm Mass of section, Mass, 33.7 kg/m Section thickness, t, 10 mm Area of section, A, 4293 mm² Radius of gyration about y-axis, i_y, 44.555 mm Radius of gyration about y-axis, i_y, 44.555 mm Elastic section modulus about y-axis, W_{el,y} 142025 mm³ Elastic section modulus about y-axis, W_{el,y} 142025 mm³ Plastic section modulus about y-axis, W_{el,y} 175159 mm³ Plastic section modulus about y-axis, V_{pl,z}, 175159 mm³ Second moment of area about y-axis, I_y, 8521473 mm⁴

Column details

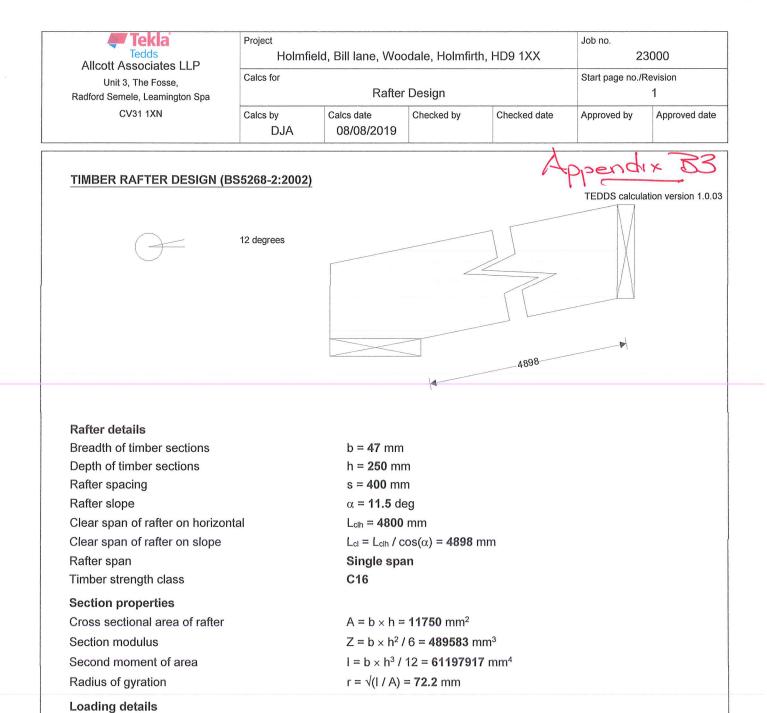
Column section Steel grade Yield strength Ultimate strength Modulus of elasticity Poisson's ratio Shear modulus SHS 120x120x10.0 S275 $f_y = 275 \text{ N/mm}^2$ $f_u = 410 \text{ N/mm}^2$ $E = 210 \text{ kN/mm}^2$ v = 0.3 $G = E / [2 × (1 + v)] = 80.8 \text{ kN/mm}^2$

Column geometry

System length for buckling - Major axis System length for buckling - Minor axis L_y = **2500** mm L_z = **2500** mm

The column is not part of a sway frame in the direction of the minor axis

The column is not part of a sway frame in the direction of the major axis


Tedds Allcott Associates LLP	Project Holmfield, Bill Iane, Woodale, Holmfirth, HD9 1XX				Holmfield, Bill lane, Woodale, Holmfirth, HD9 1XX 23000			3000
Unit 3, The Fosse,	Color for			Start page no./	Revision			
Radford Semele, Leamington Spa		Suppor	t Column		2			
CV31 1XN	Calcs by DJA	Calcs date 08/08/2019	Checked by	Checked date	Approved by	Approved of		
Column loading								
Axial load			N (Compressio	on)				
Major axis moment at end 1 -		M _{y,Ed1} = 43						
Major axis moment at end 2 -	Тор	M _{y,Ed2} = 43						
Miner and a second stand t	Detter			ingle curvature				
Minor axis moment at end 1 - Minor axis moment at end 2 -		$M_{z,Ed1} = 0.0$ $M_{z,Ed2} = 0.0$						
Major axis shear force Minor axis shear force		V _{y,Ed} = 40 k V _{z,Ed} = 0 kt						
		,	•					
Buckling length for flexural End restraint factor	ouckiing - Maj	or axis K _v = 1.000						
			K - 0500					
Buckling length			K _y = 2500 mm	I				
Buckling length for flexural I	buckling - Min							
End restraint factor		K _z = 1.000						
Buckling length		$L_{cr_z} = L_z \times$	Kz = 2500 mm	1				
Web section classification (Fable 5.2)							
Coefficient depending on fy		ε = √(235 Ν	V/mm² / f _y) = 0.	.924				
Depth between fillets		c _w = h - 3 ×	t = 90.0 mm					
Ratio of c/t		ratio _w = c _w						
Length of web taken by axial lo			$d / (2 \times f_y \times t),$					
For class 1 & 2 proportion in c	ompression	·	l _w /2) / c _w = 0.5					
Limit for class 1 web		Limit _{1w} = (3	896 × ε) / (13 ×	α - 1) = 62.53	The	web is cla		
Flange section classification	n (Table 5.2)							
Depth between fillets		$c_f = b - 3 \times$	t = 90.0 mm					
Ratio of c/t		ratio _f = c _f /	t = 9.00					
Limit for class 1 flange		Limit _{1f} = 33	×ε = 30.51					
Limit for class 2 flange			×ε = 35.13					
Limit for class 3 flange		Limit _{3f} = 42	×ε = 38.83		The fla	nge is clas		
Overall section classification	ı					tion is clas		
Resistance of cross section	(cl. 6.2)				me sec	aon is cids		
Shear - Major axis (cl. 6.2.6)								
Design shear force		V _{y,Ed} = 40.4	l kN					
Shear area		$A_{vy} = A \times h$	/ (b + h) = 21	46 mm ²				
Plastic shear resistance		$V_{pl,y,Rd} = A_{v}$	γ × (f _y / √(3)) / γ	_{γмο} = 340.8 kN				
		V _{y,Ed} / V _{pl,y,F}	ad = 0.119					
				resistance exce	-			
		$V_{y,Ed} \leq 0.5 \times V_{y}$	pl,y,Rd - No red	uction in f _y requ	ired for bendi	ing/axial fo		
Compression (cl. 6.2.4)								
Design force		N _{Ed} = 27 kľ	J					

	Project Job no. Holmfield, Bill Iane, Woodale, Holmfirth, HD9 1XX 23000							
Allcott Associates LLP Unit 3, The Fosse,	Calcs for				Associates LLP		Start page no./	Revision
Radford Semele, Leamington Spa		Suppor	t Column		3			
CV31 1XN	Calcs by DJA	Calcs date 08/08/2019	Checked by	Checked date	Approved by	Approved dat		
Design resistance		N _{c,Rd} = N _{pl,R} N _{Ed} / N _{c,Rd} =	$a_{d} = A \times f_y / \gamma_{MC}$	= 1180 kN				
				design resistand	e exceeds the	e desian for		
Bending - Major axis (cl. 6.2.	E)	11100 1110 0	omprocedien (accigit recictance		o uoongii ioi		
Design bending moment	5)	$M_{\rm vEd} = max$	(abs(My Edt))	abs(M _{y,Ed2})) = 43. 4	4 kNm			
Section modulus			= 175.2 cm ³					
Design resistance		$M_{c,y,Rd} = W_{y}$	$_{\rm y} \times f_{\rm y}$ / $\gamma_{\rm MO}$ = 48	3.2 kNm				
		M _{y,Ed} / M _{c,y,f}	_{Rd} = 0.901					
		PASS - The	bending des	ign resistance e	exceeds the d	esign mome		
Combined bending and axia	·							
Ratio design axial to design pla	astic resistance		d) / $N_{pl,Rd} = 0.0$					
Ratio web area to gross area				t) / A) = 0.441				
Ratio flange area to gross area		$a_f = min(0.8)$	b, (A - $2 \times h \times$	t) / A) = 0.441				
Bending - Major axis (cl. 6.2.	9.1)							
Design bending moment			$M_{y,Ed} = max(abs(M_{y,Ed1}), abs(M_{y,Ed2})) = 43.4 kNm$					
Plastic design resistance			$M_{pl,y,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 48.2 \text{ kNm}$					
Modified design resistance			M _{N,y,Rd} = M _{pl,y,Rd} × min(1, (1 - n) / (1 - 0.5 × a _w)) = 48.2 kNm M _{y,Ed} / M _{N,y,Rd} = 0.901					
	PAS	S - Bending resis		sence of axial lo	ad exceeds d	esian mome		
Buckling resistance (cl. 6.3)		f _v = 275 N/i						
Yield strength for buckling resi		ly - 275 Mi						
Flexural buckling - Major axi Elastic critical buckling force	5	$N = \pi^2 \times$	$E \times I_y / L_{cr y^2} =$	- 2826 KNI				
Non-dimensional slenderness			$f_y / N_{cr,y} = 0.0$					
Buckling curve (Table 6.2)		a	iy / ivci,y) = 0.0					
Imperfection factor (Table 6.1)		$\alpha_y = 0.21$						
Parameter Φ		$\Phi_y = 0.5 \times $	$[1 + \alpha_y \times (\overline{\lambda}_y \cdot$	$(0.2) + \overline{\lambda}_{y^2}] = 0.7$	56			
Reduction factor		$\chi_y = \min(1,$	0, 1 / [Φ _y + √(•	$\Phi_{y^2} - \overline{\lambda}_{y^2})]) = 0.87$	2			
Design buckling resistance		$N_{b,y,Rd} = \chi_y$	× A × fy /γ _{M1} :	= 1028.8 kN				
		N _{Ed} / N _{b,y,Rd}		مترف معلى		v = 10.00		
		PASS - The fle	exural bucklin	ng resistance ex	ceeds the des	sign axial lo		
Flexural buckling - Minor axi	S							
Elastic critical buckling force			$E \times I_z / L_{cr_z^2} =$					
Non-dimensional slenderness		$\overline{\lambda}_z = \sqrt{(A \times f_y / N_{cr,z})} = 0.646$						
Buckling curve (Table 6.2) Imperfection factor (Table 6.1)		a α _z = 0.21						
Parameter Φ		$\alpha_z = 0.21$ $\Phi_z = 0.5 \times [1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2] = 0.756$						
Reduction factor		$\varphi_z = 0.3 \times [1 + \alpha_z \times (-\lambda_z - 0.2) + \lambda_z] = 0.736$ $\chi_z = \min(1.0, 1 / [\Phi_z + \sqrt{(\Phi_z^2 - \overline{\lambda}_z^2)}] = 0.872$						
Design buckling resistance		$N_{b,z,Rd} = \chi_z \times A \times f_y / \gamma_{M1} = 1028.8 \text{ kN}$						
		NEd / Nb,z,Rd						
				ng resistance ex	ceeds the de	sign axial lo		
Minimum buckling resistanc	e							
Minimum buckling resistance		$N_{b,Rd} = min$	(Nb,y,Rd, Nb,z,Rd) = 1028.8 kN				
		N _{Ed} / N _{b,Rd} :		and the				
		PASS - The axia	l load bucklii	ng resistance ex	ceeds the de	sign axial lo		

••••••

Tekla Tedds Allcott Associates LLP	Project Holmfield, Bill lane, Woodale, Holmfirth, HD9 1XX				Job no. 23000			
Unit 3, The Fosse,	Calcs for				Start page no./Revision			
Radford Semele, Learnington Spa	Support Column				4			
CV31 1XN	Calcs by DJA	Calcs date 08/08/2019	Checked by	Checked date	Approved by	Approved da		
Buckling resistance momer	• •							
Square hollow section not sub	pject to lateral to	orsional buckling th	nerefore:-					
Reduction factor		χιτ = 1.0						
Design buckling resistance m	oment	$M_{b,Rd} = \chi_{LT}$	$ imes$ Wy $ imes$ fy / γ_{M1}	= 48.2 kNm				
Design bending moment		M _{y,Ed} = max	k(abs(M _{y,Ed1}), a	$abs(M_{y,Ed2})) = 43.4$	4 kNm			
		M _{y,Ed} / M _{b,R}						
	PASS - The de	sign buckling re	sistance mor	nent exceeds the	e maximum d	esign mom		
Combined bending and axia	I compression	(cl. 6.3.3)						
Characteristic resistance to ne	ormal force	$N_{Rk} = A \times f_{s}$, = 1180 kN					
Characteristic moment resista	s M _{y,Rk} = W _{pl}	$M_{y,Rk} = W_{pl,y} \times f_y = 48.2 \text{ kNm}$						
Characteristic moment resista	s M _{z,Rk} = W _{pl}	$_{z} \times f_{y} = 48.2$	kNm					
$\psi_y = if(abs(M_{y,Ed1}) \le abs(M_{y,Ed2})$), My,Ed1 / if(My,E	d₂>=0 kNm,max(M	y,Ed2,0.0001 kN	Mm), $M_{v,Ed2}$), $M_{v,Ed2}$	2 / if(M _{v.Ed1} >=0			
kNm,max(My,Ed1,0.0001 kNm),								
Moment distribution factor - M	ajor axis	$\psi_y = M_{y,Ed1}$	$/ M_{y,Ed2} = 1.00$	00				
Moment factor - Major axis		$C_{my} = max($	$C_{my} = max(0.4, 0.6 + 0.4 \times \psi_y) = 1.000$					
Moment distribution factor - M	inor axis		$\psi_z = M_{z,Ed1} / M_{z,Ed2} = 0.000$					
Moment factor - Minor axis		•	$C_{mz} = max(0.4, 0.6 + 0.4 \times \psi_z) = 0.600$					
Moment distribution factor for	LTB		$\psi_{LT} = M_{y,Ed1} / M_{y,Ed2} = 1.000$					
Moment factor for LTB			$C_{mLT} = max(0.4, 0.6 + 0.4 \times \psi_{LT}) = 1.000$					
Interaction factor kyy			$k_{yy} = C_{my} \times [1 + \min(0.8, \overline{\lambda}_y - 0.2) \times N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1})] = 1.012$					
Interaction factor k _{zy}		$k_{zy} = 0.6 \times k_{yy} = 0.607$						
Interaction factor kzz	$k_{zz} = C_{mz} \times [1 + min(0.8, \overline{\lambda}_z - 0.2) \times N_{Ed} / (\chi_z \times N_{Rk} / \gamma_{M1})] = 0.607$							
Interaction factor k _{vz}		$k_{yz} = 0.6 \times k_{zz} = 0.364$						
Section utilisation		(χ _y × N _{Rk} / γ _{M1}) + k		X MURK / MAR) + K	Ward/M			
		$UR_{B 1} = 0.9$		- Λ WIY, KK / ΥΜΠ) ⁻ Κ	yz ~ IVIZ,EG / (IVIZ,	ки (мп)		
	LIPs o - Nr. /	(χz × Nrk / γm1) + k						

PASS - The buckling resistance is adequate

Rafter self weight Dead load on slope Imposed load on plan Imposed point load

Modification factors Section depth factor Load sharing factor

Consider long term load condition Load duration factor Total UDL perpendicular to rafter

Notional bearing length Effective span

Check bending stress Bending stress parallel to grain Permissible bending stress Applied bending stress
$$\begin{split} F_{j} &= b \times h \times \rho_{char} \times g_{acc} = 0.04 \text{ kN/m} \\ F_{d} &= 1.15 \text{ kN/m}^{2} \\ F_{u} &= 0.75 \text{ kN/m}^{2} \\ F_{p} &= 0.90 \text{ kN} \end{split}$$

 $K_7 = (300 \text{ mm / h})^{0.11} = 1.02$ $K_8 = 1.10$

K₃ = 1.00

$$\begin{split} \mathsf{F} &= \mathsf{F}_{\mathsf{d}} \times \cos(\alpha) \times \mathsf{s} + \mathsf{F}_{\mathsf{j}} \times \cos(\alpha) = \textbf{0.486 kN/m} \\ \mathsf{L}_{\mathsf{b}} &= \mathsf{F} \times \mathsf{L}_{\mathsf{cl}} / \left[2 \times (\mathsf{b} \times \sigma_{\mathsf{cp1}} \times \mathsf{K}_{\mathsf{8}} - \mathsf{F}) \right] = \textbf{11} \text{ mm} \\ \mathsf{L}_{\mathsf{eff}} &= \mathsf{L}_{\mathsf{cl}} + \mathsf{L}_{\mathsf{b}} = \textbf{4909 mm} \end{split}$$

$$\begin{split} \sigma_m &= \textbf{5.300} \text{ N/mm}^2 \\ \sigma_{m_adm} &= \sigma_m \times K_3 \times K_7 \times K_8 = \textbf{5.948} \text{ N/mm}^2 \\ \sigma_{m_max} &= F \times L_{eff}^2 / (8 \times Z) = \textbf{2.989} \text{ N/mm}^2 \end{split}$$

Tekla Tedds Allcott Associates LLP	Project Holmfi	eld, Bill lane, Wo	odale, Holmfirl	th, HD9 1XX	Job no. 2	3000		
Unit 3, The Fosse,	Calcs for					Start page no./Revision		
Radford Semele, Leamington Spa	Rafter Design					2		
CV31 1XN	Calcs by DJA	Calcs date 08/08/2019	Checked by	Checked date	Approved by	Approved d		
			PASS - Appli	ied bending stre	ss within pern	nissible lin		
Check compressive stress p	arallel to grair	n						
Compression stress parallel to	grain	σc = 6.800	N/mm ²					
Minimum modulus of elasticity		E _{min} = 5800) N/mm²					
Compression member factor		K ₁₂ = 0.60						
Permissible compressive stres	s	$\sigma_{c_{adm}} = \sigma_{c}$	\times K ₃ \times K ₈ \times K ₁	2 = 4.476 N/mm ²				
Applied compressive stress		$\sigma_{c_{max}} = F$	$< L_{eff} \times (cot(\alpha))$	+ 3 × tan(α)) / (2	× A) = 0.561 N	/mm²		
		PAS	S - Applied co	ompressive stre	ss within perr	nissible lin		
Check combined bending an	d compressiv	e stress parallel	to grain					
Euler stress		$\sigma_{e} = \pi^{2} \times E$	min / $\lambda^2 = 12.37$	73 N/mm²				
Euler coefficient		K _{eu} = 1 – (*	1.5×σ _{c max} ×k	< ₁₂ / _{σe}) = 0.959				
Combined axial compression a	and bending ch		_	$\sigma_{c_{max}} / \sigma_{c_{adm}} = 0.0$	649 < 1			
I I		ombined compres				nissible lin		
Check shear stress								
Shear stress parallel to grain		τ = 0.670 Ν	l/mm²					
Permissible shear stress		$\tau_{adm} = \tau \times k$	$\tau_{adm} = \tau \times K_3 \times K_8 = 0.737 \text{ N/mm}^2$					
Applied shear stress			$\tau_{max} = 3 \times F \times L_{eff} / (4 \times A) = 0.152 \text{ N/mm}^2$					
				plied shear stre	ss within pern	nissible lin		
Check deflection			-	-	-			
Permissible deflection		$\delta_{adm} = 0.00$	3 × L _{eff} = 14.7	27 mm				
Bending deflection		$\delta_b = 5 \times F$	$<$ L _{eff} ⁴ / (384 \times	E _{mean} × I) = 6.820	mm			
Shear deflection			-	(mean × A) = 0.272				
Total deflection			δs = 7.091 mm					
				S - Total deflection	on within pern	nissible lin		
Consider medium term load	condition							
Load duration factor		K₃ = 1.25						
Total UDL perpendicular to rafe	er		$F = [F_u \times \cos(\alpha)^2 + F_d \times \cos(\alpha)] \times s + F_j \times \cos(\alpha) = 0.774 \text{ kN/m}$					
Notional bearing length		-	$L_{b} = F \times L_{cl} / [2 \times (b \times \sigma_{cp1} \times K_{B} - F)] = 17 \text{ mm}$					
Effective span			$L_{eff} = L_{cl} + L_{b} = 4915 \text{ mm}$					
Check bending stress								
Bending stress parallel to grain	1	$\sigma_m = 5.300$	N/mm ²					
Permissible bending stress			$\sigma_m = 5.300 \text{ N/mm}^2$					
Applied bending stress		-	$\sigma_{m_adm} = \sigma_m \times K_3 \times K_7 \times K_8 = 7.435 \text{ N/mm}^2$ $\sigma_{m_max} = F \times L_{\text{eff}}^2 / (8 \times Z) = 4.773 \text{ N/mm}^2$					
ייקאויטע אסוועוווא פערפט		-	$\sigma_{m_{max}} = r \times Left^{-7} (6 \times Z) = 4.773 \text{ N/mm}^2$ PASS - Applied bending stress within permissible lir					
Check compressive stress p	arallel to orain					· · · · · · · · · · · · · · · · · · ·		
Compression stress parallel to	-	σc = 6.800	N/mm ²					
Minimum modulus of elasticity	J	E _{min} = 5800						
Compression member factor		$K_{12} = 0.56$						
Permissible compressive stres	s		х К 3 х Кя х К1	2 = 5.196 N/mm ²				
Applied compressive stress		-		+ 3 × tan(α)) / (2	× A) = 0.894 N	/mm ²		
, ,				ompressive stre				
				•				
Check combined bending an	d compressive	e stress parallel	to grain					
Check combined bending an Euler stress	d compressive		to grain _{nin} / λ² = 12.34	11 N/mm ²				

Tekla Fedds Allcott Associates LLP Unit 3, The Fosse, Radford Semele, Leamington Spa CV31 1XN	Project Holmfield, Bill lane, Woodale, Holmfirth, HD9 1XX				Job no. 23000	
	Calcs for Rafter Design				Start page no./Revision 3	
	Calcs by DJA	Calcs date 08/08/2019	Checked by	Checked date	Approved by	Approved date
		*****		I		

	$\sigma_{m_max} / (\sigma_{m_adm} \times K_{eu}) + \sigma_{c_max} / \sigma_{c_adm} = 0.855 < 1$ ned compressive and bending stresses are within permissible limits
Check shear stress	
Shear stress parallel to grain	τ = 0.670 N/mm ²
Permissible shear stress	$\tau_{adm} = \tau \times K_3 \times K_8 = 0.921 \text{ N/mm}^2$
Applied shear stress	$\tau_{max} = 3 \times F \times L_{eff} / (4 \times A) = 0.243 \text{ N/mm}^2$
	PASS - Applied shear stress within permissible limits
Check deflection	
Permissible deflection	$\delta_{adm} = 0.003 \times L_{eff} = 14.745 \text{ mm}$
Bending deflection	$\delta_b = 5 \times F \times L_{eff}^4 / (384 \times E_{mean} \times I) = 10.920 \text{ mm}$
Shear deflection	$\delta_s = 12 \times F \times L_{eff}^2 / (5 \times E_{mean} \times A) = 0.434 \text{ mm}$
Total deflection	$\delta_{\text{max}} = \delta_{\text{b}} + \delta_{\text{s}} = 11.354 \text{ mm}$
	PASS - Total deflection within permissible limits
Consider short term load condition	
Load duration factor	K₃ = 1.50
Total UDL perpendicular to rafter	$F = F_d \times \cos(\alpha) \times s + F_j \times \cos(\alpha) = 0.486 \text{ kN/m}$
Notional bearing length	$L_{b} = [F \times L_{cl} + F_{p} \times \cos(\alpha)] / [2 \times (b \times \sigma_{cp1} \times K_{8} - F)] = 14 \text{ mm}$
Effective span	$L_{eff} = L_{cl} + L_b = 4913 \text{ mm}$
Check bending stress	
Bending stress parallel to grain	σ _m = 5.300 N/mm ²
Permissible bending stress	$\sigma_{m_adm} = \sigma_m \times K_3 \times K_7 \times K_8 = 8.922 \text{ N/mm}^2$
Applied bending stress	$\sigma_{m_{max}} = F \times L_{eff}^2 / (8 \times Z) + F_p \times \cos(\alpha) \times L_{eff} / (4 \times Z) = 5.206 \text{ N/mm}^2$
	PASS - Applied bending stress within permissible limits
Check compressive stress parallel to grain	
Compression stress parallel to grain	σc = 6.800 N/mm ²
Minimum modulus of elasticity	E _{min} = 5800 N/mm ²
Compression member factor	K ₁₂ = 0.52
Permissible compressive stress	σ_{c_adm} = $\sigma_{c} \times K_3 \times K_8 \times K_{12}$ = 5.781 N/mm ²
Applied compressive stress	$\sigma_{c_max} = F \times L_{eff} \times (\cot(\alpha) + 3 \times \tan(\alpha)) / (2 \times A) + F_{p} \times \sin(\alpha) / A = 0.576 \text{ N/mm}^2$
	PASS - Applied compressive stress within permissible limits
Check combined bending and compressive str	ess parallel to grain
Euler stress	$\sigma_e = \pi^2 \times E_{min} / \lambda^2 = 12.353 \text{ N/mm}^2$
Euler coefficient	$K_{eu} = 1 - (1.5 \times \sigma_{c_{max}} \times K_{12} / \sigma_{e}) = 0.964$
Combined axial compression and bending check	σ_{m_max} / ($\sigma_{m_adm} \times K_{eu}$) + σ_{c_max} / σ_{c_adm} = 0.705 < 1
PASS - Combi	ned compressive and bending stresses are within permissible limits
Check shear stress	
Shear stress parallel to grain	τ = 0.670 N/mm ²
Permissible shear stress	$\tau_{adm} = \tau \times K_3 \times K_8 = 1.106 \text{ N/mm}^2$
Applied shear stress	$\tau_{max} = 3 \times F \times L_{eff} / (4 \times A) + 3 \times F_{p} \times cos(\alpha) / (2 \times A) = 0.265 \text{ N/mm}^2$
	PASS - Applied shear stress within permissible limits
Check deflection	
Permissible deflection	δ_{adm} = 0.003 × L _{eff} = 14.738 mm
Bending deflection	$\delta_{b} = L_{eff}^{3} \times (5 \times F \times L_{eff} / 384 + F_{p} \times \cos(\alpha) / 48) / (E_{mean} \times I) = 10.887 \text{ mm}$
Shear deflection	$\delta_s = 12 \times L_{eff} \times (F \times L_{eff} + 2 \times F_p \times \cos(\alpha))/(5 \times E_{mean} \times A) = 0.473 \text{ mm}$

Tekla Tedds Allcott Associates LLP	Project Holmfi	eld, Bill lane, Woo	odale, Holmfirt	h, HD9 1XX	Job no. 2	3000
Unit 3, The Fosse, Radford Semele, Learnington Spa	Calcs for	Calcs for Rafter Design				Revision 4
CV31 1XN	Calcs by DJA	Calcs date 08/08/2019	Checked by	Checked date	Approved by	Approved date

Total deflection

$\delta_{max} = \delta_b + \delta_s = 11.360 \text{ mm}$

PASS - Total deflection within permissible limits

www.allcottassociates.co.uk

Castlemead Lower Castle Street Bristol BS1 3AG Tel: 0117 3224931

Birmingham Office 2 Victoria Works Vittoria Street Birmingham B1 3PE Tel: 0121 718 7008

Atlantic House Imperial Way Reading RG2 oTD Tel: 0118 9680805 Exchange House 494 Midsummer Boulevard Milton Keynes MK9 2EA Tel. 01908 483559

Oxford Office John Eccles House Robert Robinson Avenue Oxford OX4 4GP Tel. 01865 479670

The Balance 7th Floor 2 Pinfold Street The Balance Sheffield S1 2GU Tel: 0114 3583487 15 Wheeler Gate Nottingham NG1 2NA Tel. 0115 901 7074

Southam Office 2 Bull Street Southam Warwickshire CV47 1PQ Tel. 01926 812380

Email: info@allcottassociates.co.uk

Allcott Associates LLP is a limited liability partnership registered in England and Wales with registered number OC354330 Our registered office address is Ladbroke Farm, Banbury Road, Ladbroke, Warwickshire, CV47 2BY

