Structural Calculations

Relating to:

Kitchen Internal Wall Removal at

Project Preface

Client name:	
Client address:	

Senior Partner:	David Allcott
Prepared at:	Allcott Associates LLP 1 st Floor The Fosse Fosseway Radford Semele Warwickshire CV31 1XN
Document prepared by:	James Bodicoat MEng (Hons), CEng, MICE, MIStructE
Date of Inspection:	5 th April 2022
Job reference:	138041

1 Notes Specific to the design

- 1. The Building Contractors will need to and must check all dimensions of openings on site prior to ordering steel, as we will not be held responsible for any incorrect lengths that are ordered.
- Beams are designed to be the most economical size for the loading imposed in most cases, not for the thickness of wall above. It is therefore
 the contractor's responsibility to ensure that the load is correctly supported above the beam with a plate or other method.
- 3. The design is for the support Beam only and we are not responsible for ensuring the adequacy of any foundations beneath the supporting wall. This will generally the responsibility of the Building Contractor to open up areas for the Building Inspector to verify. If we have to confirm foundation adequacy which is over and above the design an extra charge will be levied.
- 4. Should the length of the beams be revised by the client or the Building Contractor after we have completed our design which results in a redesign we reserve the right to charge again for all redesign works.
- 5. All dimensions used for design are clear openings only. Add a minimum 150mm bearing length to each end of beam unless otherwise stated for actual beam length when ordering beams
- 6. The designs are based on domestic loads only unless otherwise stated.
- 7. Changes to all drawings are at client's instructions. All drawings should be checked for accuracy and should not be scaled from. Any discrepancy should be immediately informed to Allcott Associates.
- 8. The design is for the steel beams only, not the foundation or additional width support on the beam for the wall or other above the beam.
- 9. This design does not mean that any other part of the building or than the beam itself complies with current building regulations and this should be checked with the Local Authority prior to commencement of the works.
- 10. We are not obligated to check any other area within the Building and advise at to whether other areas fall under the Building Regulations. Our design will specifically pertain to the support beam required only
- 11. We take no responsibility for any design if the works are started before the necessary Building Regulation permission approval has been obtained from the local authority. If any works are started before the Local Authority Approval has been obtained, then then these works will be specifically at the risk of the owner.
- 12. Unless otherwise stated pad stones should be proprietary precast C35 concrete 450mm long by 225 deep and 100mm wide.
- 13. Designs are based on client's instructions. If these are given incorrectly by the client and the design beam is not correct for the opening, this will not the responsibility of this company. We reserve the right to charge again for any re-inspection and subsequent re-design.
- 14. The design will be based on the information including any drawings provided. Any opening up of areas will be the responsibility of the client. Any areas that are not opened up and are subsequently found not be as informed to us by the Client and requires either a re-visit or re-calculation will be charged again.
- 15. The scope and any limitations to miscellaneous services will be agreed with you before commencing.
- 16. Should the configuration of the building change after the design of the beams which subsequently affect Part A of the Building regulations, which requires re-calculation and a revisit then this will be charged again.
- 17. It is the responsibility of the Building Contractors to ensure that all walls for the support of the beams are adequate for the correct support of the beams.
- 18. These calculations are for the sole use of the person instructing the design and cannot be passed to a third party without the consent of Allcott Associates as the content will not be guaranteed to be correct as to when the report was transferred.
- 19. These calculations are only valid for 6 months from the date of the survey as codes of practice change. If the practical works are commenced within that period, you should check that the calculations are still valid.
- 20. All beams to be finished with red oxide paint and correctly fire protected as required under the current Building Regulations.
- 21. We are not responsible for advising on any fire precautions within other areas of the Building as a result of any wall removal. This should be addressed to either the Local Authority Fire Officer or Local Authority Building Inspector prior to commencement of works.

2 Calculations Sheet:- Specific to Scheme

Job title				1	ALLCOTT	
Made by	JCB	Date 07/04/2022	Sheet no. 3	Rev 00	ASSOCIATES	
Details New Beam above opening between kitchen and living room						

Loads and Load Combinations:

All dead and imposed loads are determined in accordance with BS EN 1991 Part 1-4. Refer to Appendix A for a breakdown of typical dead and imposed load build ups.

Design criteria:

- FoS for steelwork design (to BS5950) = 1.4 Dead Load + 1.6 Imposed Load
- Allowable Deflection δ = Span / 360 for brittle finishes (e.g. plaster)

1. Consider New Steel Beam

- Clear Span = 3.0m
- Supports first floor and 80mm thick lightweight blockwork partition walls above only.
- We have reviewed drawings for the recent loft conversion as supplied by the client. These show that the new floor and roof to the loft is supported on 305x165x54 UB steel beams spanning from the gable wall to the party wall.
- Given the size of these beams, we are satisfied that they are designed to span the full width of the house and do not impose any load on the internal walls at first floor Furthermore, the internal walls at first floor are of narrow lightweight block construction which is non-structural, and these are not aligned with the ground floor wall. Therefore we are satisfied that the loft conversion does not impose any load on the kitchen wall to be removed.

Dead Loads:

• Due to first floor construction	$= 0.705 \times (3.6 + 2.75)$	= 2.24 kN/m
• Due to lightweight block wall above	= 1.5 x 2.5	= 3.75 kN/m
	Total Dead Load UDL	= 6.0 kN/m
Imposed Loads:		
Imposed load on first floor	= 1.5 x (<u>3.6 + 2.75</u>) 2	= 4.8 kN/m
	Total Imposed Load UDL	= 4.8 kN/m

Refer to the beam analysis output in Appendix B, pages B1 to B3.

bb title		Job no. 1201	7/11	1		
lada hu	Data	1300		- HLLCOTT		
JCB	07/04/2022	4	00	/ ASSOCIATES		
etails New Beam abov	e opening between kitchen and	living room				
Adopt	a 178x102x19UB steel section	n, grade S275				
 Utilisati restrain Maximu 	on in bending = 0.68, therefo t) m deflection = 4.2mm = span /	re acceptable (conservati acceptable	vely assumes no latera		
Beam to be	installed tight to underside of e	existing timber jo	oists.			
Consider Beam En	d Bearings onto Internal Brickw	vork Wall:				
From Beam An	alysis, maximum unfactored re	actions at the en	ids of the b	beam are as follows:		
R _{DL} = 9 R _{IL} = 7	3 kN 2 kN					
From observat 10N/mm ² , mort	ions on site assume 102.5n ar designation (iii) and a bearin	nm clay bricks ig length of 100n	with a c nm.	compressive strength o		
Brickwork is no brickwork ber 100mm bearin	t adequate, even with a pads leath the bearing with Class g to the end of the beam dire	tone. Therefore s B engineerin ctly onto the er	rebuild t g bricks, ngineering	he top 6no. courses o 700mm wide. Provide g brick.		
Refer to calculations in Appendix B, pages B4 to B7.						
Consider Beam En	d Bearings onto Rear Cavity W	all:				
From Beam An	alysis, maximum unfactored re	actions at the en	ids of the b	beam are as follows:		
R _{DL} = 9 R _{IL} = 7	3 kN 2 kN					
From observat compressive st	ions on site assume the inr rength of 10N/mm², mortar des	ner leaf comprisi ignation (iii) and	ses 102.5 a bearing	mm clay bricks with a length of 100mm.		
Brickwork is no precast concre padstone.	ot adequate without a padsto ete padstone. Bear to have ?	ne. Therefore 100mm bearing	provide a to the en	300x100x140mm high d of the beam onto the		
Defer to colouid	tions in Annondix R nados R8	to P0				

3 Rights of Originator

We reserve the right to refuse copies of the report to any third party (other than those named above). We also reserve the right to amend our opinions in the event of additional information being made available at some future date. The Contracts (Rights of Third Parties) Act 1999 shall not apply to this agreement.

END OF REPORT

James Bodicoat MEng (Hons), CEng, MICE, MIStructE Partner For and on behalf of Allcott Associates LLP

Appendix A:- Common Loadings from EN 1991 1 - 4

|--|

225mm Solid Wall	9"Brickwork	4.73 KN/m ²
	Plaster	<u>0.20 KN/m²</u>
		<u>4.93 KN/m²</u>
250mm Cavity Wall	102 Brick	2.10 KN/m ²
	100 Block	1.35 KN/m ²
	Plaster	<u>0.20 KN/m²</u>
		<u>3.65 KN/m²</u>
100mm Solid Wall	4"Brick	2.10 KN/m ²
	Plaster	0.20 KN/m ²
		2.30 KN/m ²
Tiled Roof	Tiling/Battens/Felt	0 67 KN/m²
	Timber	0.30 KN/m ²
	Ceiling/Insulation	0.20 KN/m ²
	J.	1.17 KN/m ²
1 st Floor	Floor joists, boarding	0.305 KN/m²
	Finishes	0.050 KN/m²
	Ceiling	0.20 KN/m ²
	Miscellaneous	0.15 KN/m ²
		<u>0.705 KN/m²</u>
Flat roof	Timbers / Felt Etc	0.42 KN/m²
Ceiling	Plasterboard / Plaster	<u>0.21 KN/m²</u>
		<u>0.63 KN/m²</u>
Slate Roof	Slates/ Bath/ felt	0.28 KN/m²
	Timber	0.30 KN/m ²
	Ceiling / Insulation	0.20 KN/m ²
		<u>0.78 KN/m²</u>
Imposed Loads		
	1 st Floor	<u>1.50 KN/m²</u>
	Flat Roof (no access)	<u>0.75 KN/m²</u>
	Pitched Roof	<u>0.75 KN/m²</u>

.....

Appendix B:- Computer Analysis Results

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

	Project				Job no.	
					13	8041
Allcott Associates LLP	Calcs for				Start page no./R	evision
Fosse Way, Unit 3, First Floor	Steel Beam		B 2		32	
The Fosse, Radford Semele	Calce by	tales hu Coles data Chasked hu		Checked date	Approved by	Approved date
Warwickshire, CV31 1XN		07/04/2022	ICB	07/04/2022	ICB	Approved date 07/04/2022
	300	01104/2022	300	01104/2022	300	01/04/2022
Maximum abaar		V 24 5	LNI	V		
Maximum snear		V max = 24.3	KIN	V min = -2	4.3 KIN	
Deflection		δmax = 4.2 r	nm	δmin = 0	mm	
Maximum reaction at support A		RA_max = 24	.5 kN	RA_min =	24.5 kN	
Unfactored dead load reaction a	it support A	$R_{A_{Dead}} = 9$.	3 kN			
Unfactored imposed load reaction	on at support A	$R_{A_{Imposed}} =$	7.2 kN			
Maximum reaction at support B		RB_max = 24	RB_max = 24.5 kN RB_n		24.5 kN	
Unfactored dead load reaction a	it support B	$R_{B_{Dead}} = 9$.	3 kN			
Unfactored imposed load reaction	on at support B	$R_{B_{Imposed}} =$	7.2 kN			
Section details						
Section type			102v10 (Tata St	ool Advanco)		
Steel grade		6075	102×19 (1818 St	eel Auvance)		
	_	3215				
From table 9: Design strength	ру					
I hickness of element		max(1, t) =	7.9 mm			
Design strength		py = 275 N/	mm ²			
Modulus of elasticity		E = 205000) N/mm²			
	6.1					
	T ÷					
	1) (
	Ę	→ +	4.8			
	a,					
	Ĩ.					
	* + -					
			-1			
Lateral restraint						
		Span 1 has	alateral restraint	at supports only	,	
Effective length factors						
Effective length factor in major of	vie	K _v – 1 00				
		$\mathbf{K} = 1 0 0$				
	Effective length factor for lateral-torsional buckling		$n_{y} = 1.00$			
Effective length factor for lateral	-torsional buckling	$K_{LT,A} = 1.00$				
		Klt.b = 1.00)			
Classification of cross section	ns - Section 3.5					
		ε = √[275 Ν	l/mm ² / p _y] = 1.00	D		
Internal compression worth	able 11					
internal compression parts - T	adle 11					
Depth of section		d = 146.8 mm				
		d / t = 30.6	3 * 08 => 3 *	Class 1	plastic	
Outstand flanges - Table 11						
Width of section		b = B / 2 =	50.6 mm			
		h/T-6/	* ε <= 9 * ε	Class 1	nlastic	
		5, 1 – 0.4	0 - 0 0	01033 1	plastic	

ALLCOTT	Project				Job no. 13	8041	
Allcott Associates LLP	Calcs for	Steel	Beam		Start page no./F	Revision	
The Fosse, Radford Semele	alaa hu	Calas data	Cheeked by	Checked data	Approved by		
Warwickshire, CV31 1XN	JCB	07/04/2022	JCB	07/04/2022	JCB	07/04/2022	
					Section is o	class 1 plastic	
Shear capacity - Section 4.2.3							
Design shear force		F _v = max(a	bs(V _{max}), abs(V _n	nin)) = 24.5 kN			
		d / t < 70 *	8	// -			
			Web does n	ot need to be c	hecked for s	hear buckling	
Shear area		A _v = t * D =	853 mm ²				
Design shear resistance		P _v = 0.6 * p	y * A _v = 140.8 kl	N			
		PAS	S - Design she	ar resistance ex	ceeds desig	n shear force	
Moment capacity - Section 4.2.5	5						
Design bending moment		M = max(al	os(Ms1_max), abs((Ms1_min)) = 18.4	kNm		
Moment capacity low shear - cl.4.	2.5.2	$M_c = min(p_s)$	/ * Sxx, 1.2 * py *	Z _{xx}) = 47.1 kNm			
Effective length for lateral-torsi	onal buckling	- Section 4.3.5					
Effective length for lateral torsiona	al buckling	Le = 1.0 * L	.s1 = 3000 mm				
Slenderness ratio		$\lambda = L_E / r_{yy}$:	= 126.382				
Equivalent slenderness - Sectio	on 4.3.6.7						
Buckling parameter		u = 0.888					
Torsional index		x = 22.560					
Slenderness factor		v = 1 / [1 +	$0.05 \times (\lambda / x)^2]^{0.2}$	²⁵ = 0.790			
Ratio - cl.4.3.6.9		βw = 1.000	βw = 1.000				
Equivalent slenderness - cl.4.3.6.	7	λιτ = u × v	× λ × √[βw] = 88	.610			
Limiting slenderness - Annex B.2.	2	$\lambda_{L0} = 0.4 \times$	$(\pi^2 \times E / p_v)^{0.5} =$	34.310			
J		λ LT > λ LO - λ	Allowance sho	uld be made for	lateral-torsi	onal buckling	
Bending strength - Section 4.3.0	6.5						
Robertson constant		αLT = 7.0					
Perry factor		η∟τ = max(α	хlt × (λlt - λlo) /	1000, 0) = 0.380)		
Euler stress		$p_E = \pi^2 \times E$	/ λ _{LT²} = 257.7 N	/mm²			
		фьт = (ру + ((піт + 1) × ре) / 2	2 = 315.3 N/mm ²	2		
Bending strength - Annex B.2.1		$p_{b} = p_{E} \times p_{y}$, / (фіт + (фіт ² - р	E × ру) ^{0.5}) = 146.	3 N/mm ²		
Equivalent uniform moment fac	tor - Section 4	1.3.6.6					
Moment at quarter point of segme	ent	M2 = 13.8 k	Nm				
Moment at centre-line of segment		M3 = 18.4 k	Nm				
Moment at three quarter point of s	segment	M4 = 13.8 k	Nm				
Maximum moment in segment Ma		Mabs = 18.4	Mabs = 18.4 kNm				
Maximum moment governing buc	kling resistance	e MLT = Mabs :	= 18.4 kNm				
Equivalent uniform moment factor	for lateral-tors	sional buckling		0 5 M 04			
		m⊾⊤ = max(0	$0.2 + (0.15 \times M_2)$	$+ 0.5 \times M_3 + 0.1$	$5 \times IV4) / IVabs$, 0.44) = 0.925	
Buckling resistance moment - S	Section 4.3.6.4						
Buckling resistance moment		Мь = рь * S	••• = 25.1 kNm				
		$M_b / m_{LT} = 2$	27.1 kNm		a daalam ban	alia a na a na a na t	
		PA22 - RUCKIII	ig resistance n	noment exceed	s design ben	uing moment	
Check vertical deflection - Sect	ion 2.5.2						
Consider deflection due to dead a	and imposed lo	ads					
Limiting deflection		ðlim = Ls1 / 3	60 = 8.333 mm				
Maximum deflection span 1		$\delta = \max(ab)$	s(δmax), abs(δmin)) = 4.169 mm		a	
		PAS	5 - Maximum d	effection does r	not exceed d	effection limit	

ALLCOTT	Project				Job no.	
			_		138	041
Allcott Associates LLP	Calcs for				Start page no./Re	evision
Fosse Way, Unit 3, First Floor	Steel Beam Bearing Check on Internal Brick Wall				B 4	
The Fosse, Radford Semele Warwickshire, CV31 1XN	Calcs by JCB	Calcs date 07/04/2022	Checked by JCB	Checked date 07/04/2022	Approved by JCB	Approved date 07/04/2022

MASONRY BEARING DESIGN TO BS5628-1:2005

TEDDS calculation version 1.0.07

Masonry details

Masonry type	Clay or calcium silicate bricks
Compressive strength of unit	p _{unit} = 10.0 N/mm ²
Mortar designation	iii
Category of masonry units	Category II
Category of construction control	Normal
Partial safety factor for material strength	$\gamma m = 3.5$
Thickness of load bearing leaf	t = 103 mm
Effective thickness of masonry wall	t _{ef} = 103 mm
Height of masonry wall	h = 2400 mm
Effective height of masonry wall	h _{ef} = 2400 mm

Bearing details Beam spanning out of plane of wall	
Width of bearing	B = 102 mm
Length of bearing	l _b = 100 mm
Edge distance	x _{edge} = 10 mm
Compressive strength from Table 2 BS5628:Part	1 - Clay or calcium silicate bricks
Mortar designation	Mortar = "iii"
Brick compressive strength	p _{unit} = 10.0 N/mm ²
Characteristic compressive strength	f _k = 3.40 N/mm ²
Loading details	
Characteristic concentrated dead load	G _k = 9 kN
Characteristic concentrated imposed load	Q _k = 7 kN
Design concentrated load	$F = (G_k \times 1.4) + (Q_k \times 1.6) = 24.5 \text{ kN}$
Characteristic distributed dead load	g _k = 1.0 kN/m

	1				1	
ALLCOTT	Project				Job no. 13	8041
Allcott Associates LLP	Calcs for		Start page no./Revision			
Fosse Way, Unit 3, First Floor Steel Beam Bearing Check or				Brick Wall	B 5	
The Fosse, Radford Semele	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
Warwickshire, CV31 1XN	JCB	07/04/2022	JCB	07/04/2022	JCB	07/04/2022
Characteristic distributed impos	sed load	q _k = 1.0 kN/	/m			
Design distributed load		$f = (g_k \times 1.4)$) + (q _k × 1.6) =	= 3.0 kN/m		
Masonry bearing type						
Bearing type		Type 1				
Bearing safety factor		γbear = 1.25				
Check design bearing without	t a spreader					
Design bearing stress		f _{ca} = F / (B >	< lb) + f / t = 2. 4	435 N/mm²		
Allowable bearing stress	\sim	top - ypear x	k/m-1.214	N/mma	\sim	\sim
	FAIL -	Design bearing s	tress exceed	s allowable bear	ing stress, us	se a spreader
Spreader details				un fu		
Length of spreader		l₅ = 300 mm	ı	$\langle \rangle$		
Depth of spreader		hs = 140 mr	n		\backslash	
Edge distance		Sedge = MAX	(0 mm, x _{edge} –	(ls - B) / 2) = 0 mr	n	
Spreader bearing type						
Bearing type		Туре 3		Rebuild		ourses of
Bearing safety factor		γbear = 2.00		Wall ber	leath bear	ing with
Check design bearing with a	spreader				ingineenn	g Bricks -
Loading acts eccentrically outs	ide middle third	l – triangular stres	s distribution	566 101		Julation
Offset distance		Xoff = Xedge +	(B / 2) = 61 m	ım		
Maximum bearing stress		$f_{ca} = 2 \times F /$	$(3 \times x_{off} \times t) + $	f / t = 2.646 N/mm	²	
Allowable bearing stress		fp y ybear		Nt/pmp ²	Am	\sim
		FAIL - I	Design bearin	g stress exceeds	s allowable b	earing stress
Check design bearing at 0.4	k h below the	bearing level	·····	·····	JUL	uu
Slenderness ratio		hef / tef = 23	.41			
Eccentricity at top of wall		e _x = 1.3 mm	า			
From BS5628:1 Table 7						
Capacity reduction factor		β = 0.61				
Length of bearing distributed at	$10.4 \times h$	ld = 1072 m	m			
Maximum bearing stress		$f_{ca} = F / (I_d >$	< t) + f / t = 0.2	53 N/mm²		
Allowable bearing stress		$f_{cp} = \beta \times f_k / $	γm = 0.597 N/r	mm²		
PASS -	Allowable bea	aring stress at 0.4	4 * h below be	earing level exce	eds design b	earing stress

	Project				Job no.	
			_		138	041
Allcott Associates LLP	Calcs for 5				Start page no./Revision	
Fosse Way, Unit 3, First Floor	Beam Bearing on Internal Wall with Class B Engineering Brick				B 6	
The Fosse, Radford Semele Warwickshire, CV31 1XN	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	JCB	07/04/2022	JCB	07/04/2022	JCB	07/04/2022

MASONRY BEARING DESIGN TO BS5628-1:2005

TEDDS calculation version 1.0.07

Masonry details

Masonry type	Clay or calcium silicate bricks
Compressive strength of unit	punit = 50.0 N/mm ²
Mortar designation	iii
Category of masonry units	Category II
Category of construction control	Normal
Partial safety factor for material strength	γm = 3.5
Thickness of load bearing leaf	t = 103 mm
Effective thickness of masonry wall	t _{ef} = 103 mm
Height of masonry wall	h = 2400 mm
Effective height of masonry wall	h _{ef} = 2400 mm

Bearing details Beam spanning out of plane of wall	
Width of bearing	B = 102 mm
Length of bearing	l _b = 100 mm
Edge distance	x _{edge} = 10 mm
Compressive strength from Table 2 BS5628:Par	t 1 - Clay or calcium silicate bricks
Mortar designation	Mortar = "iii"
Brick compressive strength	punit = 50.0 N/mm ²
Characteristic compressive strength	f _k = 8.40 N/mm ²
Loading details	
Characteristic concentrated dead load	G _k = 9 kN
Characteristic concentrated imposed load	Q _k = 7 kN
Design concentrated load	$F = (G_k \times 1.4) + (Q_k \times 1.6) = 24.5 \text{ kN}$
Characteristic distributed dead load	g _k = 1.0 kN/m

ALLCOTT	Project				Job no. 138	8041		
Allcott Associates LLP	Calcs for		-		Start page no /Re	evision		
Fosse Way, Unit 3. First Floor Beam Bearing on Internal Wall with Class B Engineering Brick					B 7			
The Fosse, Radford Semele	Calce by Calce date Checked by Checked date Approved by Approved date							
Warwickshire, CV31 1XN		07/04/2022		07/04/2022		07/04/2022		
	000	0110 112022	000	0170172022	000	0110 112022		
Characteristic distributed impos	ed load	q _k = 1.0 kN	/m					
Design distributed load		$f = (g_k \times 1.4)$	l) + (q _k × 1.6) =	= 3.0 kN/m				
Masonry bearing type								
Bearing type		Type 1						
Bearing safety factor	γbear = 1.25							
Check design bearing without	a spreader							
Design bearing stress		$f_{ca} = F / (B)$	\times lb) + f / t = 2.4	435 N/mm²				
Allowable bearing stress	$f_{cp} = \gamma_{bear} \times f_k / \gamma_m = 3.000 \text{ N/mm}^2$							
		PASS - A	Allowable bea	aring stress excee	eds design be	earing stress		
Check design bearing at 0.4 $ imes$	h below the b	pearing level						
Slenderness ratio		hef / tef = 23	.41					
Eccentricity at top of wall		e _x = 1.3 mn	n					
From BS5628:1 Table 7								
Capacity reduction factor		β = 0.61						
Length of bearing distributed at	0.4 imes h	ld = 1072 m	ım					
Maximum bearing stress		$f_{ca} = F / (I_d)$	< t) + f / t = 0.2	53 N/mm ²				
Allowable bearing stress		$f_{cp} = \beta \times f_k / b_k$	γm = 1.474 N/r	mm²				
PASS -	Allowable bea	aring stress at 0.	4 * h below be	earing level excee	eds design be	aring stress		

ALLCOTT	Project				Job no.	
ASSOCIATES			_		138	041
Allcott Associates LLP	Calcs for				Start page no./Re	vision
Fosse Way, Unit 3, First Floor	Steel Beam Bearing Check on Rear Cavity Wall				B 8	
The Fosse, Radford Semele Warwickshire, CV31 1XN	Calcs by JCB	Calcs date 07/04/2022	Checked by JCB	Checked date 07/04/2022	Approved by JCB	Approved date 07/04/2022

MASONRY BEARING DESIGN TO BS5628-1:2005

TEDDS calculation version 1.0.07

Masonry details

Masonry type	Clay or calcium silicate bricks
Compressive strength of unit	p _{unit} = 10.0 N/mm ²
Mortar designation	iii
Category of masonry units	Category II
Category of construction control	Normal
Partial safety factor for material strength	$\gamma m = 3.5$
Thickness of load bearing leaf	t = 103 mm
Effective thickness of masonry wall	t _{ef} = 103 mm
Height of masonry wall	h = 2400 mm
Effective height of masonry wall	h _{ef} = 2400 mm

Bearing details	
Beam spanning out of plane of wall	
Width of bearing	B = 102 mm
Length of bearing	l _b = 100 mm
Edge distance	x _{edge} = 700 mm
Compressive strength from Table 2 BS5628:Part	1 - Clay or calcium silicate bricks
Mortar designation	Mortar = "iii"
Brick compressive strength	punit = 10.0 N/mm ²
Characteristic compressive strength	fk = 3.40 N/mm ²
Loading details	
Characteristic concentrated dead load	G _k = 9 kN
Characteristic concentrated imposed load	Q _k = 7 kN
Design concentrated load	$F = (G_k \times 1.4) + (Q_k \times 1.6) = 24.5 \text{ kN}$
Characteristic distributed dead load	g _k = 8.0 kN/m

ALLCOTT ASSOCIATES	Project				Job no. 138	041
Allcott Associates LLP Fosse Way, Unit 3, First Floor	Calcs for Start page no./Revision Steel Beam Bearing Check on Rear Cavity Wall B 9					
The Fosse, Radford Semele Warwickshire, CV31 1XN	Calcs by JCB	Calcs date 07/04/2022	Checked by JCB	Checked date 07/04/2022	Approved by JCB	Approved date 07/04/2022
Characteristic distributed imposed load $q_k = 1.0 \text{ kN/m}$						
Design distributed load	$f = (g_k \times 1.4) + (q_k \times 1.6) = 12.8 \text{ kN/m}$					
Masonry bearing type						
Bearing type		Type 2				
Bearing safety factor		γbear = 1.50				
Check design bearing without	a spreader					
Design bearing stress	•	f _{ca} = F / (B >	< I₀) + f / t = 2.5 3	31 N/mm ²		
Allowable bearing stress		f _{cp} = γ _{bear} × f	k / γm = 1.457 N	/mm²		
Ű	FAIL - De	esign bearing s	tress exceeds	allowable beari	ing stress, us	e a spreader
Spreader details						
Length of spreader		ls = 300 mm	ı			
Depth of spreader	$h_{\rm s} = 140 {\rm mm}$					
Edge distance		Sedge = max	(0 mm, x _{edge} – (I	s - B) / 2) = 601 r	mm	
Spreader bearing type						
Bearing type		Type 2				
Bearing safety factor		γ _{bear} = 1.50				
Check design bearing with a s	nreader	·				
Loading acts at midpoint of spre	ader					
Design bearing stress		$f_{ca} = F / (I_s \times$	(t) + f/t = 0.92	3 N/mm ²		
Allowable bearing stress		$f_{cn} = v_{bear} \times f$	$k / \gamma_m = 1.457 \text{ N}$	/mm ²		
		PASS - A	Allowable beari	ing stress exce	eds design be	aring stress
Check design bearing at $0.4 \times$	h below the be	aring level		5	5	5
Slenderness ratio	II below the be	het / tet - 23	41			
Eccentricity at top of wall		$e_{x} = 1.3 \text{ mm}$				
From BS5628:1 Table 7						
Capacity reduction factor		β = 0.61				
Length of bearing distributed at	0.4 × h	la = 1762 m	m			
Maximum bearing stress		$f_{ca} = F / (I_d)$	(t) + f / t = 0.26	1 N/mm²		
Allowable bearing stress		$f_{cp} = \beta \times f_{k} /$	ν _m = 0.597 N/m	m ²		

PASS - Allowable bearing stress at 0.4 * h below bearing level exceeds design bearing stress

www.allcottassociates.co.uk

Castlemead Lower Castle Street Bristol BS1 3AG Tel: 0117 3224931

Birmingham Office 2 Victoria Works Vittoria Street Birmingham B1 3PE Tel: 0121 718 7008

Atlantic House Imperial Way Reading RG2 oTD Tel: 0118 9680805 Exchange House 494 Midsummer Boulevard Milton Keynes MK9 2EA Tel. 01908 483559

Oxford Office John Eccles House Robert Robinson Avenue Oxford OX4 4GP Tel. 01865 479670

The Balance 7th Floor 2 Pinfold Street The Balance Sheffield S1 2GU Tel: 0114 3583487 15 Wheeler Gate Nottingham NG1 2NA Tel. 0115 901 7074

Fosse Way, Unit 3, First Floor, The Fosse, Radford Semele Warwickshire CV31 1XN Tel. 0333 200 7198

Allcott Associates LLP is a limited liability partnership registered in England and Wales with registered number OC354330 Our registered office address is Ladbroke Farm, Banbury Road, Ladbroke, Warwickshire, CV47 2BY

